Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve each part of the question step-by-step.
### (a) Find [tex]\((f + g)(x)\)[/tex]
Given:
[tex]\[ (f + g)(x) = 9x + 3 \][/tex]
The expression [tex]\((f + g)(x)\)[/tex] is already simplified since it is given as [tex]\(9x + 3\)[/tex].
To check the domain of [tex]\((f + g)\)[/tex]:
Since [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] are linear functions and their sum [tex]\(9x + 3\)[/tex] is also a linear function, the domain of a linear function is all real numbers.
Thus, the domain of [tex]\((f + g)\)[/tex] is:
B. The domain is [tex]\(\{ x \mid x \text{ is any real number} \}\)[/tex]
### (b) Find [tex]\((f - g)(x)\)[/tex]
To find [tex]\((f - g)(x)\)[/tex]:
Given that [tex]\(f(x) = 4.5x + 1.5\)[/tex] and [tex]\(g(x) = 4.5x + 1.5\)[/tex] (determined from the sum provided in the question),
[tex]\[ (f - g)(x) = f(x) - g(x) \][/tex]
Substituting the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f - g)(x) = (4.5x + 1.5) - (4.5x + 1.5) \][/tex]
Simplifying this expression:
[tex]\[ (f - g)(x) = 4.5x + 1.5 - 4.5x - 1.5 \][/tex]
[tex]\[ (f - g)(x) = 0 \][/tex]
Thus, the simplified form of [tex]\((f - g)(x)\)[/tex] is:
[tex]\((f - g)(x) = 0\)[/tex]
### Summary
1. [tex]\((f + g)(x) = 9x + 3\)[/tex]
2. The domain of [tex]\((f + g)\)[/tex] is [tex]\(\{ x \mid x \text{ is any real number} \}\)[/tex]
3. [tex]\((f - g)(x) = 0\)[/tex]
### (a) Find [tex]\((f + g)(x)\)[/tex]
Given:
[tex]\[ (f + g)(x) = 9x + 3 \][/tex]
The expression [tex]\((f + g)(x)\)[/tex] is already simplified since it is given as [tex]\(9x + 3\)[/tex].
To check the domain of [tex]\((f + g)\)[/tex]:
Since [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] are linear functions and their sum [tex]\(9x + 3\)[/tex] is also a linear function, the domain of a linear function is all real numbers.
Thus, the domain of [tex]\((f + g)\)[/tex] is:
B. The domain is [tex]\(\{ x \mid x \text{ is any real number} \}\)[/tex]
### (b) Find [tex]\((f - g)(x)\)[/tex]
To find [tex]\((f - g)(x)\)[/tex]:
Given that [tex]\(f(x) = 4.5x + 1.5\)[/tex] and [tex]\(g(x) = 4.5x + 1.5\)[/tex] (determined from the sum provided in the question),
[tex]\[ (f - g)(x) = f(x) - g(x) \][/tex]
Substituting the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f - g)(x) = (4.5x + 1.5) - (4.5x + 1.5) \][/tex]
Simplifying this expression:
[tex]\[ (f - g)(x) = 4.5x + 1.5 - 4.5x - 1.5 \][/tex]
[tex]\[ (f - g)(x) = 0 \][/tex]
Thus, the simplified form of [tex]\((f - g)(x)\)[/tex] is:
[tex]\((f - g)(x) = 0\)[/tex]
### Summary
1. [tex]\((f + g)(x) = 9x + 3\)[/tex]
2. The domain of [tex]\((f + g)\)[/tex] is [tex]\(\{ x \mid x \text{ is any real number} \}\)[/tex]
3. [tex]\((f - g)(x) = 0\)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.