Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Graph a line with a slope of [tex]\(-\frac{3}{4}\)[/tex] that contains the point [tex]\((2, 3)\)[/tex].

Sagot :

To graph a line with a slope of [tex]\(-\frac{3}{4}\)[/tex] that passes through the point [tex]\((2, 3)\)[/tex], we will use the point-slope form of a linear equation. Here are the detailed steps:

1. Identify the point-slope form of the equation:

The point-slope form of a linear equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope of the line.

2. Substitute the given point and slope into the equation:

Given:
[tex]\[ (x_1, y_1) = (2, 3) \][/tex]
and
[tex]\[ m = -\frac{3}{4} \][/tex]

Substitute these values into the point-slope form:
[tex]\[ y - 3 = -\frac{3}{4}(x - 2) \][/tex]

3. Simplify the equation to the slope-intercept form (optional but easier for graphing):

Distribute the slope [tex]\(-\frac{3}{4}\)[/tex] through the parenthesis:
[tex]\[ y - 3 = -\frac{3}{4}x + \frac{3}{2} \][/tex]

Add 3 to both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{3}{4}x + \frac{3}{2} + 3 \][/tex]

Convert 3 to a fraction with a common denominator:
[tex]\[ y = -\frac{3}{4}x + \frac{3}{2} + \frac{6}{2} \][/tex]

Combine the fractions:
[tex]\[ y = -\frac{3}{4}x + \frac{9}{2} \][/tex]

4. Write the equation in slope-intercept form:

The slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
So our equation is:
[tex]\[ y = -\frac{3}{4}x + \frac{9}{2} \][/tex]

5. Plot the point [tex]\((2, 3)\)[/tex] on the graph:

Mark the point [tex]\((2, 3)\)[/tex] on the coordinate plane.

6. Use the slope to find another point:

Starting from [tex]\((2, 3)\)[/tex]:
- The slope [tex]\(-\frac{3}{4}\)[/tex] means that for every 4 units you move to the right along the x-axis, you move 3 units down along the y-axis.
- From [tex]\((2, 3)\)[/tex], move 4 units to the right to [tex]\(x = 6\)[/tex] and 3 units down to [tex]\(y = 0\)[/tex].

The second point is [tex]\((6, 0)\)[/tex].

7. Draw the line through the points:

- Plot the point [tex]\((6, 0)\)[/tex].
- Draw a straight line passing through both points [tex]\((2, 3)\)[/tex] and [tex]\((6, 0)\)[/tex].

8. Complete the graph:

Include labels for the axes and a title for the graph. You can also extend the line across the graph for better visualization.

Once you follow these steps, you'll have successfully graphed the line with a slope of [tex]\(-\frac{3}{4}\)[/tex] passing through the point [tex]\((2, 3)\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.