Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To graph the line with a slope of [tex]\(-\frac{3}{4}\)[/tex] that passes through the point [tex]\((2, 3)\)[/tex], follow these steps:
1. Understand the Slope-Intercept Form:
The slope-intercept form of a linear equation is given by:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
2. Identify the Provided Information:
- Slope ([tex]\(m\)[/tex]) is given as [tex]\(-\frac{3}{4}\)[/tex].
- The line passes through the point [tex]\((2, 3)\)[/tex]. Here, [tex]\(x_1 = 2\)[/tex] and [tex]\(y_1 = 3\)[/tex].
3. Substitute the Slope and Point into the Point-Slope Form:
The point-slope form of a line's equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting [tex]\(m = -\frac{3}{4}\)[/tex], [tex]\(x_1 = 2\)[/tex], and [tex]\(y_1 = 3\)[/tex]:
[tex]\[ y - 3 = -\frac{3}{4}(x - 2) \][/tex]
4. Convert to Slope-Intercept Form:
Simplify the equation to get it in the form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y - 3 = -\frac{3}{4}x + \frac{3}{2} \][/tex]
Add 3 to both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{3}{4}x + \frac{3}{2} + 3 \][/tex]
Express 3 as a fraction with a common denominator:
[tex]\[ y = -\frac{3}{4}x + \frac{3}{2} + \frac{6}{2} \][/tex]
Combine the fractions:
[tex]\[ y = -\frac{3}{4}x + \frac{9}{2} \][/tex]
Therefore:
[tex]\[ b = \frac{9}{2} \][/tex]
Converting [tex]\(\frac{9}{2}\)[/tex] to a decimal for clarity:
[tex]\[ b = 4.5 \][/tex]
5. Write the Final Equation:
The equation of the line in slope-intercept form is:
[tex]\[ y = -\frac{3}{4}x + 4.5 \][/tex]
6. Plot the Line:
- Start by plotting the y-intercept ([tex]\(0, 4.5\)[/tex]).
- From this point, use the slope [tex]\(-\frac{3}{4}\)[/tex]:
- Move down 3 units (because of the negative slope).
- Move right 4 units.
- Alternatively, you can use the given point [tex]\((2, 3)\)[/tex]. Start at [tex]\((2, 3)\)[/tex] and apply the slope:
- From [tex]\((2, 3)\)[/tex], moving down 3 units and right 4 units should maintain the line.
7. Draw the Line:
Connect these points with a straight line, ensuring the plotted points align with the slope of [tex]\(-\frac{3}{4}\)[/tex].
The graph of this line will show a descending slope from left to right, intersecting the y-axis at [tex]\(4.5\)[/tex] and passing through the point [tex]\((2, 3)\)[/tex].
1. Understand the Slope-Intercept Form:
The slope-intercept form of a linear equation is given by:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
2. Identify the Provided Information:
- Slope ([tex]\(m\)[/tex]) is given as [tex]\(-\frac{3}{4}\)[/tex].
- The line passes through the point [tex]\((2, 3)\)[/tex]. Here, [tex]\(x_1 = 2\)[/tex] and [tex]\(y_1 = 3\)[/tex].
3. Substitute the Slope and Point into the Point-Slope Form:
The point-slope form of a line's equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting [tex]\(m = -\frac{3}{4}\)[/tex], [tex]\(x_1 = 2\)[/tex], and [tex]\(y_1 = 3\)[/tex]:
[tex]\[ y - 3 = -\frac{3}{4}(x - 2) \][/tex]
4. Convert to Slope-Intercept Form:
Simplify the equation to get it in the form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y - 3 = -\frac{3}{4}x + \frac{3}{2} \][/tex]
Add 3 to both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{3}{4}x + \frac{3}{2} + 3 \][/tex]
Express 3 as a fraction with a common denominator:
[tex]\[ y = -\frac{3}{4}x + \frac{3}{2} + \frac{6}{2} \][/tex]
Combine the fractions:
[tex]\[ y = -\frac{3}{4}x + \frac{9}{2} \][/tex]
Therefore:
[tex]\[ b = \frac{9}{2} \][/tex]
Converting [tex]\(\frac{9}{2}\)[/tex] to a decimal for clarity:
[tex]\[ b = 4.5 \][/tex]
5. Write the Final Equation:
The equation of the line in slope-intercept form is:
[tex]\[ y = -\frac{3}{4}x + 4.5 \][/tex]
6. Plot the Line:
- Start by plotting the y-intercept ([tex]\(0, 4.5\)[/tex]).
- From this point, use the slope [tex]\(-\frac{3}{4}\)[/tex]:
- Move down 3 units (because of the negative slope).
- Move right 4 units.
- Alternatively, you can use the given point [tex]\((2, 3)\)[/tex]. Start at [tex]\((2, 3)\)[/tex] and apply the slope:
- From [tex]\((2, 3)\)[/tex], moving down 3 units and right 4 units should maintain the line.
7. Draw the Line:
Connect these points with a straight line, ensuring the plotted points align with the slope of [tex]\(-\frac{3}{4}\)[/tex].
The graph of this line will show a descending slope from left to right, intersecting the y-axis at [tex]\(4.5\)[/tex] and passing through the point [tex]\((2, 3)\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.