Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Absolutely, let’s break down the steps to solve the problem of calculating the energy released in a fission reaction of a plutonium nucleus.
Step 1: Understand the Problem and Given Data
We are provided with:
- The original mass of the plutonium nucleus, [tex]\( 4.986 \times 10^{-27} \)[/tex] kg.
- The total mass of the resulting fragments after fission, [tex]\( 4.198 \times 10^{-27} \)[/tex] kg.
- The speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] m/s (a known constant required for energy calculations).
Step 2: Calculate the Mass Difference
The mass difference, [tex]\( \Delta m \)[/tex], can be found by subtracting the total mass of the fragments from the original mass of the plutonium nucleus:
[tex]\[ \Delta m = \text{original mass} - \text{fragmented mass} \][/tex]
Plugging in the values:
[tex]\[ \Delta m = 4.986 \times 10^{-27} \, \text{kg} - 4.198 \times 10^{-27} \, \text{kg} \][/tex]
[tex]\[ \Delta m = 7.88 \times 10^{-28} \, \text{kg} \][/tex]
(Note that the precise value here is [tex]\( 7.879999999999999 \times 10^{-28} \)[/tex] kg.)
Step 3: Calculate the Energy Released
The energy released during the fission reaction can be calculated using Einstein’s mass-energy equivalence formula [tex]\( E = mc^2 \)[/tex]:
[tex]\[ E = \Delta m \times c^2 \][/tex]
Where:
- [tex]\( \Delta m \)[/tex] is the mass difference calculated above.
- [tex]\( c \)[/tex] is the speed of light.
Using the values:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
Perform the calculations:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times 9.0 \times 10^{16} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ E = 7.09 \times 10^{-11} \, \text{J} \][/tex]
(Note that the precise value here is [tex]\( 7.091999999999999 \times 10^{-11} \)[/tex] J.)
Step 4: Conclusion
Thus, the energy released in the fission reaction of the plutonium nucleus is approximately [tex]\( 7.09 \times 10^{-11} \)[/tex] joules.
To summarize the results:
- Original mass: [tex]\( 4.986 \times 10^{-27} \)[/tex] kg
- Fragmented mass: [tex]\( 4.198 \times 10^{-27} \)[/tex] kg
- Mass difference: [tex]\( 7.88 \times 10^{-28} \)[/tex] kg
- Energy released: [tex]\( 7.09 \times 10^{-11} \)[/tex] J
This concludes the step-by-step solution for the given problem.
Step 1: Understand the Problem and Given Data
We are provided with:
- The original mass of the plutonium nucleus, [tex]\( 4.986 \times 10^{-27} \)[/tex] kg.
- The total mass of the resulting fragments after fission, [tex]\( 4.198 \times 10^{-27} \)[/tex] kg.
- The speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] m/s (a known constant required for energy calculations).
Step 2: Calculate the Mass Difference
The mass difference, [tex]\( \Delta m \)[/tex], can be found by subtracting the total mass of the fragments from the original mass of the plutonium nucleus:
[tex]\[ \Delta m = \text{original mass} - \text{fragmented mass} \][/tex]
Plugging in the values:
[tex]\[ \Delta m = 4.986 \times 10^{-27} \, \text{kg} - 4.198 \times 10^{-27} \, \text{kg} \][/tex]
[tex]\[ \Delta m = 7.88 \times 10^{-28} \, \text{kg} \][/tex]
(Note that the precise value here is [tex]\( 7.879999999999999 \times 10^{-28} \)[/tex] kg.)
Step 3: Calculate the Energy Released
The energy released during the fission reaction can be calculated using Einstein’s mass-energy equivalence formula [tex]\( E = mc^2 \)[/tex]:
[tex]\[ E = \Delta m \times c^2 \][/tex]
Where:
- [tex]\( \Delta m \)[/tex] is the mass difference calculated above.
- [tex]\( c \)[/tex] is the speed of light.
Using the values:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times (3.0 \times 10^8 \, \text{m/s})^2 \][/tex]
Perform the calculations:
[tex]\[ E = 7.88 \times 10^{-28} \, \text{kg} \times 9.0 \times 10^{16} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ E = 7.09 \times 10^{-11} \, \text{J} \][/tex]
(Note that the precise value here is [tex]\( 7.091999999999999 \times 10^{-11} \)[/tex] J.)
Step 4: Conclusion
Thus, the energy released in the fission reaction of the plutonium nucleus is approximately [tex]\( 7.09 \times 10^{-11} \)[/tex] joules.
To summarize the results:
- Original mass: [tex]\( 4.986 \times 10^{-27} \)[/tex] kg
- Fragmented mass: [tex]\( 4.198 \times 10^{-27} \)[/tex] kg
- Mass difference: [tex]\( 7.88 \times 10^{-28} \)[/tex] kg
- Energy released: [tex]\( 7.09 \times 10^{-11} \)[/tex] J
This concludes the step-by-step solution for the given problem.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.