Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine how many grams of AgBr are required to produce 75.0 grams of NaBr, we follow a series of logical steps based on stoichiometry and the provided molar masses.
1. Calculate the moles of NaBr:
- Given mass of NaBr: [tex]\( 75.0 \, \text{grams} \)[/tex]
- Molar mass of NaBr: [tex]\( 102.89 \, \text{g/mol} \)[/tex]
- Moles of NaBr can be calculated using the formula:
[tex]\[ \text{moles of NaBr} = \frac{\text{mass of NaBr}}{\text{molar mass of NaBr}} \][/tex]
Substituting the values:
[tex]\[ \text{moles of NaBr} = \frac{75.0 \, \text{grams}}{102.89 \, \text{g/mol}} \approx 0.7289338128097969 \, \text{moles} \][/tex]
2. Determine the moles of AgBr required:
- From the balanced chemical equation:
[tex]\[ 2 \, \text{AgBr} + \text{Na}_2\text{S}_2\text{O}_3 \rightarrow \text{Ag}_2\text{S}_2\text{O}_3 + 2 \, \text{NaBr} \][/tex]
The stoichiometric coefficients indicate that 2 moles of AgBr produce 2 moles of NaBr. Hence,
the number of moles of AgBr needed is the same as the number of moles of NaBr calculated.
Therefore,
[tex]\[ \text{moles of AgBr} = 0.7289338128097969 \, \text{moles} \][/tex]
3. Calculate the mass of AgBr required:
- Molar mass of AgBr: [tex]\( 187.77 \, \text{g/mol} \)[/tex]
- The mass of AgBr can be calculated using the formula:
[tex]\[ \text{mass of AgBr} = \text{moles of AgBr} \times \text{molar mass of AgBr} \][/tex]
Substituting the values:
[tex]\[ \text{mass of AgBr} = 0.7289338128097969 \, \text{moles} \times 187.77 \, \text{g/mol} \approx 136.87190203129558 \, \text{grams} \][/tex]
In conclusion, to produce 75.0 grams of NaBr, you would need approximately 136.87 grams of AgBr.
1. Calculate the moles of NaBr:
- Given mass of NaBr: [tex]\( 75.0 \, \text{grams} \)[/tex]
- Molar mass of NaBr: [tex]\( 102.89 \, \text{g/mol} \)[/tex]
- Moles of NaBr can be calculated using the formula:
[tex]\[ \text{moles of NaBr} = \frac{\text{mass of NaBr}}{\text{molar mass of NaBr}} \][/tex]
Substituting the values:
[tex]\[ \text{moles of NaBr} = \frac{75.0 \, \text{grams}}{102.89 \, \text{g/mol}} \approx 0.7289338128097969 \, \text{moles} \][/tex]
2. Determine the moles of AgBr required:
- From the balanced chemical equation:
[tex]\[ 2 \, \text{AgBr} + \text{Na}_2\text{S}_2\text{O}_3 \rightarrow \text{Ag}_2\text{S}_2\text{O}_3 + 2 \, \text{NaBr} \][/tex]
The stoichiometric coefficients indicate that 2 moles of AgBr produce 2 moles of NaBr. Hence,
the number of moles of AgBr needed is the same as the number of moles of NaBr calculated.
Therefore,
[tex]\[ \text{moles of AgBr} = 0.7289338128097969 \, \text{moles} \][/tex]
3. Calculate the mass of AgBr required:
- Molar mass of AgBr: [tex]\( 187.77 \, \text{g/mol} \)[/tex]
- The mass of AgBr can be calculated using the formula:
[tex]\[ \text{mass of AgBr} = \text{moles of AgBr} \times \text{molar mass of AgBr} \][/tex]
Substituting the values:
[tex]\[ \text{mass of AgBr} = 0.7289338128097969 \, \text{moles} \times 187.77 \, \text{g/mol} \approx 136.87190203129558 \, \text{grams} \][/tex]
In conclusion, to produce 75.0 grams of NaBr, you would need approximately 136.87 grams of AgBr.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.