Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine how many grams of AgBr are required to produce 75.0 grams of NaBr, we follow a series of logical steps based on stoichiometry and the provided molar masses.
1. Calculate the moles of NaBr:
- Given mass of NaBr: [tex]\( 75.0 \, \text{grams} \)[/tex]
- Molar mass of NaBr: [tex]\( 102.89 \, \text{g/mol} \)[/tex]
- Moles of NaBr can be calculated using the formula:
[tex]\[ \text{moles of NaBr} = \frac{\text{mass of NaBr}}{\text{molar mass of NaBr}} \][/tex]
Substituting the values:
[tex]\[ \text{moles of NaBr} = \frac{75.0 \, \text{grams}}{102.89 \, \text{g/mol}} \approx 0.7289338128097969 \, \text{moles} \][/tex]
2. Determine the moles of AgBr required:
- From the balanced chemical equation:
[tex]\[ 2 \, \text{AgBr} + \text{Na}_2\text{S}_2\text{O}_3 \rightarrow \text{Ag}_2\text{S}_2\text{O}_3 + 2 \, \text{NaBr} \][/tex]
The stoichiometric coefficients indicate that 2 moles of AgBr produce 2 moles of NaBr. Hence,
the number of moles of AgBr needed is the same as the number of moles of NaBr calculated.
Therefore,
[tex]\[ \text{moles of AgBr} = 0.7289338128097969 \, \text{moles} \][/tex]
3. Calculate the mass of AgBr required:
- Molar mass of AgBr: [tex]\( 187.77 \, \text{g/mol} \)[/tex]
- The mass of AgBr can be calculated using the formula:
[tex]\[ \text{mass of AgBr} = \text{moles of AgBr} \times \text{molar mass of AgBr} \][/tex]
Substituting the values:
[tex]\[ \text{mass of AgBr} = 0.7289338128097969 \, \text{moles} \times 187.77 \, \text{g/mol} \approx 136.87190203129558 \, \text{grams} \][/tex]
In conclusion, to produce 75.0 grams of NaBr, you would need approximately 136.87 grams of AgBr.
1. Calculate the moles of NaBr:
- Given mass of NaBr: [tex]\( 75.0 \, \text{grams} \)[/tex]
- Molar mass of NaBr: [tex]\( 102.89 \, \text{g/mol} \)[/tex]
- Moles of NaBr can be calculated using the formula:
[tex]\[ \text{moles of NaBr} = \frac{\text{mass of NaBr}}{\text{molar mass of NaBr}} \][/tex]
Substituting the values:
[tex]\[ \text{moles of NaBr} = \frac{75.0 \, \text{grams}}{102.89 \, \text{g/mol}} \approx 0.7289338128097969 \, \text{moles} \][/tex]
2. Determine the moles of AgBr required:
- From the balanced chemical equation:
[tex]\[ 2 \, \text{AgBr} + \text{Na}_2\text{S}_2\text{O}_3 \rightarrow \text{Ag}_2\text{S}_2\text{O}_3 + 2 \, \text{NaBr} \][/tex]
The stoichiometric coefficients indicate that 2 moles of AgBr produce 2 moles of NaBr. Hence,
the number of moles of AgBr needed is the same as the number of moles of NaBr calculated.
Therefore,
[tex]\[ \text{moles of AgBr} = 0.7289338128097969 \, \text{moles} \][/tex]
3. Calculate the mass of AgBr required:
- Molar mass of AgBr: [tex]\( 187.77 \, \text{g/mol} \)[/tex]
- The mass of AgBr can be calculated using the formula:
[tex]\[ \text{mass of AgBr} = \text{moles of AgBr} \times \text{molar mass of AgBr} \][/tex]
Substituting the values:
[tex]\[ \text{mass of AgBr} = 0.7289338128097969 \, \text{moles} \times 187.77 \, \text{g/mol} \approx 136.87190203129558 \, \text{grams} \][/tex]
In conclusion, to produce 75.0 grams of NaBr, you would need approximately 136.87 grams of AgBr.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.