At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the derivative [tex]\( f'(x) \)[/tex] of the function [tex]\( f(x) = 9 \cdot 5^{g(x)} \)[/tex] at [tex]\( x = 3 \)[/tex], we will follow these steps:
1. Express [tex]\( f(x) \)[/tex] and the given information:
[tex]\[ f(x) = 9 \cdot 5^{g(x)} \][/tex]
Given data:
[tex]\[ g(3) = -2, \quad g'(3) = -1, \quad g''(3) = -9 \][/tex]
2. Differentiate [tex]\( f(x) \)[/tex] using the chain rule:
To find [tex]\( f'(x) \)[/tex], we apply the chain rule. First, express [tex]\( f(x) \)[/tex] as:
[tex]\[ f(x) = 9 \cdot 5^{g(x)} \][/tex]
Taking the derivative with respect to [tex]\( x \)[/tex], we get:
[tex]\[ f'(x) = 9 \cdot \frac{d}{dx} \left( 5^{g(x)} \right) \][/tex]
3. Differentiate [tex]\( 5^{g(x)} \)[/tex] using the chain rule and the exponential function derivative:
Recall that the derivative of [tex]\( a^{h(x)} \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( a^{h(x)} \ln(a) h'(x) \)[/tex]. Applying this, we find:
[tex]\[ \frac{d}{dx} \left( 5^{g(x)} \right) = 5^{g(x)} \cdot \ln(5) \cdot g'(x) \][/tex]
Hence:
[tex]\[ f'(x) = 9 \cdot 5^{g(x)} \cdot \ln(5) \cdot g'(x) \][/tex]
4. Evaluate [tex]\( f'(x) \)[/tex] at [tex]\( x = 3 \)[/tex]:
Plug in the given values [tex]\( g(3) = -2 \)[/tex] and [tex]\( g'(3) = -1 \)[/tex]:
[tex]\[ f'(3) = 9 \cdot 5^{g(3)} \cdot \ln(5) \cdot g'(3) \][/tex]
Substitute the known values:
[tex]\[ f'(3) = 9 \cdot 5^{-2} \cdot \ln(5) \cdot (-1) \][/tex]
5. Simplify the expression:
[tex]\[ 5^{-2} = \frac{1}{5^2} = \frac{1}{25} \][/tex]
Therefore:
[tex]\[ f'(3) = 9 \cdot \frac{1}{25} \cdot \ln(5) \cdot (-1) \][/tex]
[tex]\[ f'(3) = -\frac{9}{25} \cdot \ln(5) \][/tex]
6. Approximate the numerical value:
Given the options, we see that the closest numerical value to our simplified expression of [tex]\( f'(3) \)[/tex] is approximately:
[tex]\[ f'(3) \approx -0.5794 \][/tex]
So, the value of [tex]\( f'(3) \)[/tex] is closest to:
[tex]\[ \boxed{-0.5794} \][/tex]
1. Express [tex]\( f(x) \)[/tex] and the given information:
[tex]\[ f(x) = 9 \cdot 5^{g(x)} \][/tex]
Given data:
[tex]\[ g(3) = -2, \quad g'(3) = -1, \quad g''(3) = -9 \][/tex]
2. Differentiate [tex]\( f(x) \)[/tex] using the chain rule:
To find [tex]\( f'(x) \)[/tex], we apply the chain rule. First, express [tex]\( f(x) \)[/tex] as:
[tex]\[ f(x) = 9 \cdot 5^{g(x)} \][/tex]
Taking the derivative with respect to [tex]\( x \)[/tex], we get:
[tex]\[ f'(x) = 9 \cdot \frac{d}{dx} \left( 5^{g(x)} \right) \][/tex]
3. Differentiate [tex]\( 5^{g(x)} \)[/tex] using the chain rule and the exponential function derivative:
Recall that the derivative of [tex]\( a^{h(x)} \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( a^{h(x)} \ln(a) h'(x) \)[/tex]. Applying this, we find:
[tex]\[ \frac{d}{dx} \left( 5^{g(x)} \right) = 5^{g(x)} \cdot \ln(5) \cdot g'(x) \][/tex]
Hence:
[tex]\[ f'(x) = 9 \cdot 5^{g(x)} \cdot \ln(5) \cdot g'(x) \][/tex]
4. Evaluate [tex]\( f'(x) \)[/tex] at [tex]\( x = 3 \)[/tex]:
Plug in the given values [tex]\( g(3) = -2 \)[/tex] and [tex]\( g'(3) = -1 \)[/tex]:
[tex]\[ f'(3) = 9 \cdot 5^{g(3)} \cdot \ln(5) \cdot g'(3) \][/tex]
Substitute the known values:
[tex]\[ f'(3) = 9 \cdot 5^{-2} \cdot \ln(5) \cdot (-1) \][/tex]
5. Simplify the expression:
[tex]\[ 5^{-2} = \frac{1}{5^2} = \frac{1}{25} \][/tex]
Therefore:
[tex]\[ f'(3) = 9 \cdot \frac{1}{25} \cdot \ln(5) \cdot (-1) \][/tex]
[tex]\[ f'(3) = -\frac{9}{25} \cdot \ln(5) \][/tex]
6. Approximate the numerical value:
Given the options, we see that the closest numerical value to our simplified expression of [tex]\( f'(3) \)[/tex] is approximately:
[tex]\[ f'(3) \approx -0.5794 \][/tex]
So, the value of [tex]\( f'(3) \)[/tex] is closest to:
[tex]\[ \boxed{-0.5794} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.