Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's break down the problem step by step.
We are given the expression:
[tex]\[ \frac{2^{a+3} - 2^{a+1}}{3 \times 2^a} \][/tex]
First, let's look at the numerator [tex]\(2^{a+3} - 2^{a+1}\)[/tex] and simplify it:
1. Rewrite the terms using the properties of exponents:
[tex]\[ 2^{a+3} = 2^a \cdot 2^3 = 2^a \cdot 8 \][/tex]
[tex]\[ 2^{a+1} = 2^a \cdot 2 = 2^a \cdot 2 \][/tex]
2. Substitute these back into the numerator:
[tex]\[ 2^{a+3} - 2^{a+1} = 2^a \cdot 8 - 2^a \cdot 2 \][/tex]
3. Factor out [tex]\(2^a\)[/tex] from both terms:
[tex]\[ 2^a \cdot 8 - 2^a \cdot 2 = 2^a (8 - 2) = 2^a \cdot 6 \][/tex]
So the numerator simplifies to:
[tex]\[ 2^a \cdot 6 \][/tex]
Now let's rewrite the expression with the simplified numerator:
[tex]\[ \frac{2^a \cdot 6}{3 \times 2^a} \][/tex]
Next, let's simplify the entire fraction:
1. Notice that [tex]\(2^a\)[/tex] in the numerator and the denominator can cancel out:
[tex]\[ \frac{6 \cdot 2^a}{3 \cdot 2^a} = \frac{6}{3} \][/tex]
2. Simplify [tex]\( \frac{6}{3} \)[/tex]:
[tex]\[ \frac{6}{3} = 2 \][/tex]
Therefore, the simplified form of the expression is:
[tex]\[ 2 \][/tex]
So, the detailed, step-by-step simplification process for the given expression [tex]\(\frac{2^{a+3} - 2^{a+1}}{3 \times 2^a}\)[/tex] yields:
[tex]\[ 2 \][/tex]
We are given the expression:
[tex]\[ \frac{2^{a+3} - 2^{a+1}}{3 \times 2^a} \][/tex]
First, let's look at the numerator [tex]\(2^{a+3} - 2^{a+1}\)[/tex] and simplify it:
1. Rewrite the terms using the properties of exponents:
[tex]\[ 2^{a+3} = 2^a \cdot 2^3 = 2^a \cdot 8 \][/tex]
[tex]\[ 2^{a+1} = 2^a \cdot 2 = 2^a \cdot 2 \][/tex]
2. Substitute these back into the numerator:
[tex]\[ 2^{a+3} - 2^{a+1} = 2^a \cdot 8 - 2^a \cdot 2 \][/tex]
3. Factor out [tex]\(2^a\)[/tex] from both terms:
[tex]\[ 2^a \cdot 8 - 2^a \cdot 2 = 2^a (8 - 2) = 2^a \cdot 6 \][/tex]
So the numerator simplifies to:
[tex]\[ 2^a \cdot 6 \][/tex]
Now let's rewrite the expression with the simplified numerator:
[tex]\[ \frac{2^a \cdot 6}{3 \times 2^a} \][/tex]
Next, let's simplify the entire fraction:
1. Notice that [tex]\(2^a\)[/tex] in the numerator and the denominator can cancel out:
[tex]\[ \frac{6 \cdot 2^a}{3 \cdot 2^a} = \frac{6}{3} \][/tex]
2. Simplify [tex]\( \frac{6}{3} \)[/tex]:
[tex]\[ \frac{6}{3} = 2 \][/tex]
Therefore, the simplified form of the expression is:
[tex]\[ 2 \][/tex]
So, the detailed, step-by-step simplification process for the given expression [tex]\(\frac{2^{a+3} - 2^{a+1}}{3 \times 2^a}\)[/tex] yields:
[tex]\[ 2 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.