At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze the statement and determine its correctness step by step.
### Step-by-Step Analysis
1. Remainder Theorem: The Remainder Theorem states that if a polynomial [tex]\( P(x) \)[/tex] is divided by [tex]\( (x - c) \)[/tex], then the remainder of this division is [tex]\( P(c) \)[/tex]. This theorem provides a direct way to find the remainder without performing the full polynomial division.
2. Given Expression: The statement in the problem is that the polynomial [tex]\( P(x) \)[/tex] is divided by [tex]\( (x + a) \)[/tex]. This expression can be rewritten by recognizing that [tex]\( (x + a) \)[/tex] is the same as [tex]\( (x - (-a)) \)[/tex].
3. Applying the Remainder Theorem:
- According to the Remainder Theorem, for the polynomial [tex]\( P(x) \)[/tex] divided by [tex]\( (x + a) \)[/tex], we would evaluate the polynomial at [tex]\( -a \)[/tex], because [tex]\( (x + a) \)[/tex] can be rewritten as [tex]\( (x - (-a)) \)[/tex].
- Therefore, the remainder when [tex]\( P(x) \)[/tex] is divided by [tex]\( (x + a) \)[/tex] is [tex]\( P(-a) \)[/tex].
4. Given Statement: The given statement claims that the remainder equals [tex]\( P(a) \)[/tex]. According to our analysis, the correct answer should be [tex]\( P(-a) \)[/tex], not [tex]\( P(a) \)[/tex].
### Conclusion
Based on the steps above, the correct remainder when the polynomial [tex]\( P(x) \)[/tex] is divided by [tex]\( (x + a) \)[/tex] should be [tex]\( P(-a) \)[/tex]. Hence, the given statement "the remainder equals [tex]\( P(a) \)[/tex]" is incorrect.
Therefore, the correct answer is:
B. False
### Step-by-Step Analysis
1. Remainder Theorem: The Remainder Theorem states that if a polynomial [tex]\( P(x) \)[/tex] is divided by [tex]\( (x - c) \)[/tex], then the remainder of this division is [tex]\( P(c) \)[/tex]. This theorem provides a direct way to find the remainder without performing the full polynomial division.
2. Given Expression: The statement in the problem is that the polynomial [tex]\( P(x) \)[/tex] is divided by [tex]\( (x + a) \)[/tex]. This expression can be rewritten by recognizing that [tex]\( (x + a) \)[/tex] is the same as [tex]\( (x - (-a)) \)[/tex].
3. Applying the Remainder Theorem:
- According to the Remainder Theorem, for the polynomial [tex]\( P(x) \)[/tex] divided by [tex]\( (x + a) \)[/tex], we would evaluate the polynomial at [tex]\( -a \)[/tex], because [tex]\( (x + a) \)[/tex] can be rewritten as [tex]\( (x - (-a)) \)[/tex].
- Therefore, the remainder when [tex]\( P(x) \)[/tex] is divided by [tex]\( (x + a) \)[/tex] is [tex]\( P(-a) \)[/tex].
4. Given Statement: The given statement claims that the remainder equals [tex]\( P(a) \)[/tex]. According to our analysis, the correct answer should be [tex]\( P(-a) \)[/tex], not [tex]\( P(a) \)[/tex].
### Conclusion
Based on the steps above, the correct remainder when the polynomial [tex]\( P(x) \)[/tex] is divided by [tex]\( (x + a) \)[/tex] should be [tex]\( P(-a) \)[/tex]. Hence, the given statement "the remainder equals [tex]\( P(a) \)[/tex]" is incorrect.
Therefore, the correct answer is:
B. False
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.