Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's determine which of these tables represents a function. Recall that a relation (table of [tex]\((x, y)\)[/tex] pairs) is a function if every [tex]\(x\)[/tex] value corresponds to exactly one [tex]\(y\)[/tex] value. In other words, for each [tex]\(x\)[/tex] value, there should be only one [tex]\(y\)[/tex] value associated with it.
Let’s analyze each table one by one.
### Table 1
[tex]\[ \begin{tabular}{|c|c|} \hline$x$ & $y$ \\ \hline-3 & -1 \\ \hline 0 & 0 \\ \hline-2 & -1 \\ \hline 8 & 1 \\ \hline \end{tabular} \][/tex]
- x = -3 corresponds to y = -1
- x = 0 corresponds to y = 0
- x = -2 corresponds to y = -1
- x = 8 corresponds to y = 1
All [tex]\(x\)[/tex] values are unique. Therefore, Table 1 represents a function.
### Table 2
[tex]\[ \begin{tabular}{|c|c|} \hline$x$ & $y$ \\ \hline-5 & -5 \\ \hline 0 & 0 \\ \hline-5 & 5 \\ \hline 6 & -6 \\ \hline \end{tabular} \][/tex]
- x = -5 corresponds to y = -5
- x = 0 corresponds to y = 0
- x = -5 corresponds to y = 5
- x = 6 corresponds to y = -6
The [tex]\(x\)[/tex] value -5 corresponds to both y = -5 and y = 5. Therefore, Table 2 does not represent a function.
### Table 3
[tex]\[ \begin{tabular}{|c|c|} \hline$x$ & $y$ \\ \hline-4 & 8 \\ \hline-2 & 2 \\ \hline-2 & 4 \\ \hline 0 & 2 \\ \hline \end{tabular} \][/tex]
- x = -4 corresponds to y = 8
- x = -2 corresponds to y = 2
- x = -2 corresponds to y = 4
- x = 0 corresponds to y = 2
The [tex]\(x\)[/tex] value -2 corresponds to both y = 2 and y = 4. Therefore, Table 3 does not represent a function.
### Table 4
[tex]\[ \begin{tabular}{|c|c|} \hline$x$ & $y$ \\ \hline-4 & 2 \\ \hline 3 & 5 \\ \hline 1 & 3 \\ \hline-4 & 0 \\ \hline \end{tabular} \][/tex]
- x = -4 corresponds to y = 2
- x = 3 corresponds to y = 5
- x = 1 corresponds to y = 3
- x = -4 corresponds to y = 0
The [tex]\(x\)[/tex] value -4 corresponds to both y = 2 and y = 0. Therefore, Table 4 does not represent a function.
### Conclusion
Only Table 1 represents a function, as it is the only table where each [tex]\(x\)[/tex] value is associated with exactly one [tex]\(y\)[/tex] value.
Let’s analyze each table one by one.
### Table 1
[tex]\[ \begin{tabular}{|c|c|} \hline$x$ & $y$ \\ \hline-3 & -1 \\ \hline 0 & 0 \\ \hline-2 & -1 \\ \hline 8 & 1 \\ \hline \end{tabular} \][/tex]
- x = -3 corresponds to y = -1
- x = 0 corresponds to y = 0
- x = -2 corresponds to y = -1
- x = 8 corresponds to y = 1
All [tex]\(x\)[/tex] values are unique. Therefore, Table 1 represents a function.
### Table 2
[tex]\[ \begin{tabular}{|c|c|} \hline$x$ & $y$ \\ \hline-5 & -5 \\ \hline 0 & 0 \\ \hline-5 & 5 \\ \hline 6 & -6 \\ \hline \end{tabular} \][/tex]
- x = -5 corresponds to y = -5
- x = 0 corresponds to y = 0
- x = -5 corresponds to y = 5
- x = 6 corresponds to y = -6
The [tex]\(x\)[/tex] value -5 corresponds to both y = -5 and y = 5. Therefore, Table 2 does not represent a function.
### Table 3
[tex]\[ \begin{tabular}{|c|c|} \hline$x$ & $y$ \\ \hline-4 & 8 \\ \hline-2 & 2 \\ \hline-2 & 4 \\ \hline 0 & 2 \\ \hline \end{tabular} \][/tex]
- x = -4 corresponds to y = 8
- x = -2 corresponds to y = 2
- x = -2 corresponds to y = 4
- x = 0 corresponds to y = 2
The [tex]\(x\)[/tex] value -2 corresponds to both y = 2 and y = 4. Therefore, Table 3 does not represent a function.
### Table 4
[tex]\[ \begin{tabular}{|c|c|} \hline$x$ & $y$ \\ \hline-4 & 2 \\ \hline 3 & 5 \\ \hline 1 & 3 \\ \hline-4 & 0 \\ \hline \end{tabular} \][/tex]
- x = -4 corresponds to y = 2
- x = 3 corresponds to y = 5
- x = 1 corresponds to y = 3
- x = -4 corresponds to y = 0
The [tex]\(x\)[/tex] value -4 corresponds to both y = 2 and y = 0. Therefore, Table 4 does not represent a function.
### Conclusion
Only Table 1 represents a function, as it is the only table where each [tex]\(x\)[/tex] value is associated with exactly one [tex]\(y\)[/tex] value.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.