Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine whether the statement "If a polynomial is divided by [tex]\((x - a)\)[/tex] and the remainder equals zero, then [tex]\((x - a)\)[/tex] is a factor of the polynomial" is true or false, we need to delve into the Factor Theorem.
The Factor Theorem is an important concept in algebra that connects the roots of a polynomial to its factors. The theorem states that:
1. A polynomial [tex]\(P(x)\)[/tex] has a factor [tex]\((x - a)\)[/tex] if and only if [tex]\(P(a) = 0\)[/tex].
2. If [tex]\(P(a) = 0\)[/tex], then the polynomial [tex]\(P(x)\)[/tex] can be expressed as [tex]\(P(x) = (x - a)Q(x)\)[/tex], where [tex]\(Q(x)\)[/tex] is another polynomial.
Given this theorem, let's analyze the given statement:
- When a polynomial [tex]\(P(x)\)[/tex] is divided by [tex]\((x - a)\)[/tex] and the remainder is zero, this means that substituting [tex]\(x = a\)[/tex] into the polynomial [tex]\(P(x)\)[/tex] results in [tex]\(P(a) = 0\)[/tex].
- According to the Factor Theorem, if [tex]\(P(a) = 0\)[/tex], then [tex]\((x - a)\)[/tex] is a factor of [tex]\(P(x)\)[/tex].
Therefore, if the remainder is zero when [tex]\(P(x)\)[/tex] is divided by [tex]\((x - a)\)[/tex], [tex]\((x - a)\)[/tex] must be a factor of the polynomial [tex]\(P(x)\)[/tex].
Given this reasoning, the correct answer to the statement is:
A. True
The Factor Theorem is an important concept in algebra that connects the roots of a polynomial to its factors. The theorem states that:
1. A polynomial [tex]\(P(x)\)[/tex] has a factor [tex]\((x - a)\)[/tex] if and only if [tex]\(P(a) = 0\)[/tex].
2. If [tex]\(P(a) = 0\)[/tex], then the polynomial [tex]\(P(x)\)[/tex] can be expressed as [tex]\(P(x) = (x - a)Q(x)\)[/tex], where [tex]\(Q(x)\)[/tex] is another polynomial.
Given this theorem, let's analyze the given statement:
- When a polynomial [tex]\(P(x)\)[/tex] is divided by [tex]\((x - a)\)[/tex] and the remainder is zero, this means that substituting [tex]\(x = a\)[/tex] into the polynomial [tex]\(P(x)\)[/tex] results in [tex]\(P(a) = 0\)[/tex].
- According to the Factor Theorem, if [tex]\(P(a) = 0\)[/tex], then [tex]\((x - a)\)[/tex] is a factor of [tex]\(P(x)\)[/tex].
Therefore, if the remainder is zero when [tex]\(P(x)\)[/tex] is divided by [tex]\((x - a)\)[/tex], [tex]\((x - a)\)[/tex] must be a factor of the polynomial [tex]\(P(x)\)[/tex].
Given this reasoning, the correct answer to the statement is:
A. True
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.