Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Two horses, Thunder and Misty, are accelerating a wagon at [tex]\(1.3 \, \text{m/s}^2\)[/tex]. The force of friction is [tex]\(75 \, \text{N}\)[/tex]. Thunder is pulling with a force of [tex]\(1000 \, \text{N}\)[/tex], while Misty is pulling with a force of [tex]\(800 \, \text{N}\)[/tex]. What is the mass of the wagon? Round your answer to the nearest whole number.

Mass of the wagon: [tex]\(\boxed{\text{kg}}\)[/tex]

Sagot :

To find the mass of the wagon, we can use Newton's second law of motion, which states [tex]\( F = m \cdot a \)[/tex], where:
- [tex]\( F \)[/tex] is the net force acting on the object,
- [tex]\( m \)[/tex] is the mass of the object,
- [tex]\( a \)[/tex] is the acceleration of the object.

Given values:
- Acceleration [tex]\( a = 1.3 \, \text{m/s}^2 \)[/tex],
- Friction force [tex]\( F_{\text{friction}} = 75 \, \text{N} \)[/tex],
- Force exerted by Thunder [tex]\( F_{\text{Thunder}} = 1000 \, \text{N} \)[/tex],
- Force exerted by Misty [tex]\( F_{\text{Misty}} = 800 \, \text{N} \)[/tex].

First, calculate the total pulling force [tex]\( F_{\text{pulling}} \)[/tex]:
[tex]\[ F_{\text{pulling}} = F_{\text{Thunder}} + F_{\text{Misty}} \][/tex]
[tex]\[ F_{\text{pulling}} = 1000 \, \text{N} + 800 \, \text{N} \][/tex]
[tex]\[ F_{\text{pulling}} = 1800 \, \text{N} \][/tex]

Next, calculate the net force acting on the wagon [tex]\( F_{\text{net}} \)[/tex]:
[tex]\[ F_{\text{net}} = F_{\text{pulling}} - F_{\text{friction}} \][/tex]
[tex]\[ F_{\text{net}} = 1800 \, \text{N} - 75 \, \text{N} \][/tex]
[tex]\[ F_{\text{net}} = 1725 \, \text{N} \][/tex]

Now use Newton's second law to find the mass [tex]\( m \)[/tex] of the wagon:
[tex]\[ F_{\text{net}} = m \cdot a \][/tex]
[tex]\[ m = \frac{F_{\text{net}}}{a} \][/tex]
[tex]\[ m = \frac{1725 \, \text{N}}{1.3 \, \text{m/s}^2} \][/tex]

Calculate the mass:
[tex]\[ m = \frac{1725}{1.3} \][/tex]
[tex]\[ m \approx 1326.92 \, \text{kg} \][/tex]

Round the mass to the nearest whole number:
[tex]\[ m \approx 1327 \, \text{kg} \][/tex]

Therefore, the mass of the wagon is [tex]\( \boxed{1327} \)[/tex] kg.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.