Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's start by breaking down the problem and solving each part step-by-step.
Given:
- Initial concentration, [tex]\( [A]_0 = 5.0 \, \text{M} \)[/tex]
- Rate constant, [tex]\( k = 1.0 \times 10^{-2} \)[/tex]
- Time elapsed, [tex]\( t = 30.0 \, \text{s} \)[/tex]
### a) Zero Order Reaction
For a zero order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 - kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} - (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} - 0.3 \, \text{M} \][/tex]
[tex]\[ [A] = 4.7 \, \text{M} \][/tex]
ii. The half-life for a zero order reaction is:
[tex]\[ t_{1/2} = \frac{[A]_0}{2k} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0 \, \text{M}}{2 \times 1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0}{0.02} \][/tex]
[tex]\[ t_{1/2} = 250.0 \, \text{s} \][/tex]
### b) First Order Reaction
For a first order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 e^{-kt} \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-(1.0 \times 10^{-2}) \times 30.0} \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-0.3} \][/tex]
[tex]\[ [A] \approx 5.0 \, \text{M} \times 0.7408182 \][/tex]
[tex]\[ [A] \approx 3.704 \, \text{M} \][/tex]
ii. The half-life for a first order reaction is:
[tex]\[ t_{1/2} = \frac{\ln 2}{k} \][/tex]
[tex]\[ t_{1/2} = \frac{0.693}{1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} \approx 69.3147 \, \text{s} \][/tex]
### c) Second Order Reaction
For a second order reaction, the rate law is given by:
[tex]\[ \frac{1}{[A]} = \frac{1}{[A]_0} + kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ \frac{1}{[A]} = \frac{1}{5.0 \, \text{M}} + (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.2 + 0.3 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.5 \][/tex]
[tex]\[ [A] = \frac{1}{0.5} \][/tex]
[tex]\[ [A] = 2.0 \, \text{M} \][/tex]
ii. The half-life for a second order reaction is:
[tex]\[ t_{1/2} = \frac{1}{k[A]_0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{(1.0 \times 10^{-2}) \times 5.0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{0.05} \][/tex]
[tex]\[ t_{1/2} = 20.0 \, \text{s} \][/tex]
In summary:
- a) Zero order:
- Concentration after 30s: [tex]\( [A] = 4.7 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 250.0 \, \text{s} \)[/tex]
- b) First order:
- Concentration after 30s: [tex]\( [A] \approx 3.704 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} \approx 69.3147 \, \text{s} \)[/tex]
- c) Second order:
- Concentration after 30s: [tex]\( [A] = 2.0 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 20.0 \, \text{s} \)[/tex]
Given:
- Initial concentration, [tex]\( [A]_0 = 5.0 \, \text{M} \)[/tex]
- Rate constant, [tex]\( k = 1.0 \times 10^{-2} \)[/tex]
- Time elapsed, [tex]\( t = 30.0 \, \text{s} \)[/tex]
### a) Zero Order Reaction
For a zero order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 - kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} - (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} - 0.3 \, \text{M} \][/tex]
[tex]\[ [A] = 4.7 \, \text{M} \][/tex]
ii. The half-life for a zero order reaction is:
[tex]\[ t_{1/2} = \frac{[A]_0}{2k} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0 \, \text{M}}{2 \times 1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0}{0.02} \][/tex]
[tex]\[ t_{1/2} = 250.0 \, \text{s} \][/tex]
### b) First Order Reaction
For a first order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 e^{-kt} \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-(1.0 \times 10^{-2}) \times 30.0} \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-0.3} \][/tex]
[tex]\[ [A] \approx 5.0 \, \text{M} \times 0.7408182 \][/tex]
[tex]\[ [A] \approx 3.704 \, \text{M} \][/tex]
ii. The half-life for a first order reaction is:
[tex]\[ t_{1/2} = \frac{\ln 2}{k} \][/tex]
[tex]\[ t_{1/2} = \frac{0.693}{1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} \approx 69.3147 \, \text{s} \][/tex]
### c) Second Order Reaction
For a second order reaction, the rate law is given by:
[tex]\[ \frac{1}{[A]} = \frac{1}{[A]_0} + kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ \frac{1}{[A]} = \frac{1}{5.0 \, \text{M}} + (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.2 + 0.3 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.5 \][/tex]
[tex]\[ [A] = \frac{1}{0.5} \][/tex]
[tex]\[ [A] = 2.0 \, \text{M} \][/tex]
ii. The half-life for a second order reaction is:
[tex]\[ t_{1/2} = \frac{1}{k[A]_0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{(1.0 \times 10^{-2}) \times 5.0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{0.05} \][/tex]
[tex]\[ t_{1/2} = 20.0 \, \text{s} \][/tex]
In summary:
- a) Zero order:
- Concentration after 30s: [tex]\( [A] = 4.7 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 250.0 \, \text{s} \)[/tex]
- b) First order:
- Concentration after 30s: [tex]\( [A] \approx 3.704 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} \approx 69.3147 \, \text{s} \)[/tex]
- c) Second order:
- Concentration after 30s: [tex]\( [A] = 2.0 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 20.0 \, \text{s} \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.