Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's start by breaking down the problem and solving each part step-by-step.
Given:
- Initial concentration, [tex]\( [A]_0 = 5.0 \, \text{M} \)[/tex]
- Rate constant, [tex]\( k = 1.0 \times 10^{-2} \)[/tex]
- Time elapsed, [tex]\( t = 30.0 \, \text{s} \)[/tex]
### a) Zero Order Reaction
For a zero order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 - kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} - (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} - 0.3 \, \text{M} \][/tex]
[tex]\[ [A] = 4.7 \, \text{M} \][/tex]
ii. The half-life for a zero order reaction is:
[tex]\[ t_{1/2} = \frac{[A]_0}{2k} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0 \, \text{M}}{2 \times 1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0}{0.02} \][/tex]
[tex]\[ t_{1/2} = 250.0 \, \text{s} \][/tex]
### b) First Order Reaction
For a first order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 e^{-kt} \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-(1.0 \times 10^{-2}) \times 30.0} \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-0.3} \][/tex]
[tex]\[ [A] \approx 5.0 \, \text{M} \times 0.7408182 \][/tex]
[tex]\[ [A] \approx 3.704 \, \text{M} \][/tex]
ii. The half-life for a first order reaction is:
[tex]\[ t_{1/2} = \frac{\ln 2}{k} \][/tex]
[tex]\[ t_{1/2} = \frac{0.693}{1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} \approx 69.3147 \, \text{s} \][/tex]
### c) Second Order Reaction
For a second order reaction, the rate law is given by:
[tex]\[ \frac{1}{[A]} = \frac{1}{[A]_0} + kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ \frac{1}{[A]} = \frac{1}{5.0 \, \text{M}} + (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.2 + 0.3 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.5 \][/tex]
[tex]\[ [A] = \frac{1}{0.5} \][/tex]
[tex]\[ [A] = 2.0 \, \text{M} \][/tex]
ii. The half-life for a second order reaction is:
[tex]\[ t_{1/2} = \frac{1}{k[A]_0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{(1.0 \times 10^{-2}) \times 5.0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{0.05} \][/tex]
[tex]\[ t_{1/2} = 20.0 \, \text{s} \][/tex]
In summary:
- a) Zero order:
- Concentration after 30s: [tex]\( [A] = 4.7 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 250.0 \, \text{s} \)[/tex]
- b) First order:
- Concentration after 30s: [tex]\( [A] \approx 3.704 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} \approx 69.3147 \, \text{s} \)[/tex]
- c) Second order:
- Concentration after 30s: [tex]\( [A] = 2.0 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 20.0 \, \text{s} \)[/tex]
Given:
- Initial concentration, [tex]\( [A]_0 = 5.0 \, \text{M} \)[/tex]
- Rate constant, [tex]\( k = 1.0 \times 10^{-2} \)[/tex]
- Time elapsed, [tex]\( t = 30.0 \, \text{s} \)[/tex]
### a) Zero Order Reaction
For a zero order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 - kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} - (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} - 0.3 \, \text{M} \][/tex]
[tex]\[ [A] = 4.7 \, \text{M} \][/tex]
ii. The half-life for a zero order reaction is:
[tex]\[ t_{1/2} = \frac{[A]_0}{2k} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0 \, \text{M}}{2 \times 1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0}{0.02} \][/tex]
[tex]\[ t_{1/2} = 250.0 \, \text{s} \][/tex]
### b) First Order Reaction
For a first order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 e^{-kt} \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-(1.0 \times 10^{-2}) \times 30.0} \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-0.3} \][/tex]
[tex]\[ [A] \approx 5.0 \, \text{M} \times 0.7408182 \][/tex]
[tex]\[ [A] \approx 3.704 \, \text{M} \][/tex]
ii. The half-life for a first order reaction is:
[tex]\[ t_{1/2} = \frac{\ln 2}{k} \][/tex]
[tex]\[ t_{1/2} = \frac{0.693}{1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} \approx 69.3147 \, \text{s} \][/tex]
### c) Second Order Reaction
For a second order reaction, the rate law is given by:
[tex]\[ \frac{1}{[A]} = \frac{1}{[A]_0} + kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ \frac{1}{[A]} = \frac{1}{5.0 \, \text{M}} + (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.2 + 0.3 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.5 \][/tex]
[tex]\[ [A] = \frac{1}{0.5} \][/tex]
[tex]\[ [A] = 2.0 \, \text{M} \][/tex]
ii. The half-life for a second order reaction is:
[tex]\[ t_{1/2} = \frac{1}{k[A]_0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{(1.0 \times 10^{-2}) \times 5.0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{0.05} \][/tex]
[tex]\[ t_{1/2} = 20.0 \, \text{s} \][/tex]
In summary:
- a) Zero order:
- Concentration after 30s: [tex]\( [A] = 4.7 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 250.0 \, \text{s} \)[/tex]
- b) First order:
- Concentration after 30s: [tex]\( [A] \approx 3.704 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} \approx 69.3147 \, \text{s} \)[/tex]
- c) Second order:
- Concentration after 30s: [tex]\( [A] = 2.0 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 20.0 \, \text{s} \)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.