Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's start by breaking down the problem and solving each part step-by-step.
Given:
- Initial concentration, [tex]\( [A]_0 = 5.0 \, \text{M} \)[/tex]
- Rate constant, [tex]\( k = 1.0 \times 10^{-2} \)[/tex]
- Time elapsed, [tex]\( t = 30.0 \, \text{s} \)[/tex]
### a) Zero Order Reaction
For a zero order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 - kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} - (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} - 0.3 \, \text{M} \][/tex]
[tex]\[ [A] = 4.7 \, \text{M} \][/tex]
ii. The half-life for a zero order reaction is:
[tex]\[ t_{1/2} = \frac{[A]_0}{2k} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0 \, \text{M}}{2 \times 1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0}{0.02} \][/tex]
[tex]\[ t_{1/2} = 250.0 \, \text{s} \][/tex]
### b) First Order Reaction
For a first order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 e^{-kt} \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-(1.0 \times 10^{-2}) \times 30.0} \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-0.3} \][/tex]
[tex]\[ [A] \approx 5.0 \, \text{M} \times 0.7408182 \][/tex]
[tex]\[ [A] \approx 3.704 \, \text{M} \][/tex]
ii. The half-life for a first order reaction is:
[tex]\[ t_{1/2} = \frac{\ln 2}{k} \][/tex]
[tex]\[ t_{1/2} = \frac{0.693}{1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} \approx 69.3147 \, \text{s} \][/tex]
### c) Second Order Reaction
For a second order reaction, the rate law is given by:
[tex]\[ \frac{1}{[A]} = \frac{1}{[A]_0} + kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ \frac{1}{[A]} = \frac{1}{5.0 \, \text{M}} + (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.2 + 0.3 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.5 \][/tex]
[tex]\[ [A] = \frac{1}{0.5} \][/tex]
[tex]\[ [A] = 2.0 \, \text{M} \][/tex]
ii. The half-life for a second order reaction is:
[tex]\[ t_{1/2} = \frac{1}{k[A]_0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{(1.0 \times 10^{-2}) \times 5.0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{0.05} \][/tex]
[tex]\[ t_{1/2} = 20.0 \, \text{s} \][/tex]
In summary:
- a) Zero order:
- Concentration after 30s: [tex]\( [A] = 4.7 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 250.0 \, \text{s} \)[/tex]
- b) First order:
- Concentration after 30s: [tex]\( [A] \approx 3.704 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} \approx 69.3147 \, \text{s} \)[/tex]
- c) Second order:
- Concentration after 30s: [tex]\( [A] = 2.0 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 20.0 \, \text{s} \)[/tex]
Given:
- Initial concentration, [tex]\( [A]_0 = 5.0 \, \text{M} \)[/tex]
- Rate constant, [tex]\( k = 1.0 \times 10^{-2} \)[/tex]
- Time elapsed, [tex]\( t = 30.0 \, \text{s} \)[/tex]
### a) Zero Order Reaction
For a zero order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 - kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} - (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} - 0.3 \, \text{M} \][/tex]
[tex]\[ [A] = 4.7 \, \text{M} \][/tex]
ii. The half-life for a zero order reaction is:
[tex]\[ t_{1/2} = \frac{[A]_0}{2k} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0 \, \text{M}}{2 \times 1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} = \frac{5.0}{0.02} \][/tex]
[tex]\[ t_{1/2} = 250.0 \, \text{s} \][/tex]
### b) First Order Reaction
For a first order reaction, the rate law is given by:
[tex]\[ [A] = [A]_0 e^{-kt} \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-(1.0 \times 10^{-2}) \times 30.0} \][/tex]
[tex]\[ [A] = 5.0 \, \text{M} \times e^{-0.3} \][/tex]
[tex]\[ [A] \approx 5.0 \, \text{M} \times 0.7408182 \][/tex]
[tex]\[ [A] \approx 3.704 \, \text{M} \][/tex]
ii. The half-life for a first order reaction is:
[tex]\[ t_{1/2} = \frac{\ln 2}{k} \][/tex]
[tex]\[ t_{1/2} = \frac{0.693}{1.0 \times 10^{-2}} \][/tex]
[tex]\[ t_{1/2} \approx 69.3147 \, \text{s} \][/tex]
### c) Second Order Reaction
For a second order reaction, the rate law is given by:
[tex]\[ \frac{1}{[A]} = \frac{1}{[A]_0} + kt \][/tex]
i. To find the concentration of [tex]\( A \)[/tex] after 30.0 seconds:
[tex]\[ \frac{1}{[A]} = \frac{1}{5.0 \, \text{M}} + (1.0 \times 10^{-2}) \times 30.0 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.2 + 0.3 \][/tex]
[tex]\[ \frac{1}{[A]} = 0.5 \][/tex]
[tex]\[ [A] = \frac{1}{0.5} \][/tex]
[tex]\[ [A] = 2.0 \, \text{M} \][/tex]
ii. The half-life for a second order reaction is:
[tex]\[ t_{1/2} = \frac{1}{k[A]_0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{(1.0 \times 10^{-2}) \times 5.0} \][/tex]
[tex]\[ t_{1/2} = \frac{1}{0.05} \][/tex]
[tex]\[ t_{1/2} = 20.0 \, \text{s} \][/tex]
In summary:
- a) Zero order:
- Concentration after 30s: [tex]\( [A] = 4.7 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 250.0 \, \text{s} \)[/tex]
- b) First order:
- Concentration after 30s: [tex]\( [A] \approx 3.704 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} \approx 69.3147 \, \text{s} \)[/tex]
- c) Second order:
- Concentration after 30s: [tex]\( [A] = 2.0 \, \text{M} \)[/tex]
- Half-life: [tex]\( t_{1/2} = 20.0 \, \text{s} \)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.