At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine whether the function [tex]\( f(x) = 8x + 7 \)[/tex] has an inverse, we need to check whether it is a one-to-one function. A one-to-one function means each output is produced by exactly one input.
For a linear function of the form [tex]\( f(x) = ax + b \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants, the function is one-to-one if [tex]\( a \neq 0 \)[/tex].
Here,
[tex]\[ f(x) = 8x + 7 \][/tex]
The coefficient [tex]\( a \)[/tex] is 8, which is not equal to zero. Therefore, the function [tex]\( f(x) = 8x + 7 \)[/tex] is indeed one-to-one and thus has an inverse.
To find the inverse function, we follow these steps:
1. Rewrite the function [tex]\( f(x) = y \)[/tex].
[tex]\[ y = 8x + 7 \][/tex]
2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to begin finding the inverse.
[tex]\[ x = 8y + 7 \][/tex]
3. Solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].
[tex]\[ x - 7 = 8y \][/tex]
[tex]\[ y = \frac{x - 7}{8} \][/tex]
4. Replace [tex]\( y \)[/tex] with [tex]\( f^{-1}(x) \)[/tex] to denote the inverse function.
[tex]\[ f^{-1}(x) = \frac{x - 7}{8} \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x - 7}{8} \][/tex]
Therefore:
- Yes, [tex]\( f \)[/tex] does have an inverse.
- The inverse function is [tex]\( f^{-1}(x) = \frac{x - 7}{8} \)[/tex].
For a linear function of the form [tex]\( f(x) = ax + b \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants, the function is one-to-one if [tex]\( a \neq 0 \)[/tex].
Here,
[tex]\[ f(x) = 8x + 7 \][/tex]
The coefficient [tex]\( a \)[/tex] is 8, which is not equal to zero. Therefore, the function [tex]\( f(x) = 8x + 7 \)[/tex] is indeed one-to-one and thus has an inverse.
To find the inverse function, we follow these steps:
1. Rewrite the function [tex]\( f(x) = y \)[/tex].
[tex]\[ y = 8x + 7 \][/tex]
2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to begin finding the inverse.
[tex]\[ x = 8y + 7 \][/tex]
3. Solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].
[tex]\[ x - 7 = 8y \][/tex]
[tex]\[ y = \frac{x - 7}{8} \][/tex]
4. Replace [tex]\( y \)[/tex] with [tex]\( f^{-1}(x) \)[/tex] to denote the inverse function.
[tex]\[ f^{-1}(x) = \frac{x - 7}{8} \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x - 7}{8} \][/tex]
Therefore:
- Yes, [tex]\( f \)[/tex] does have an inverse.
- The inverse function is [tex]\( f^{-1}(x) = \frac{x - 7}{8} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.