Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine whether the function [tex]\( f(x) = 8x + 7 \)[/tex] has an inverse, we need to check whether it is a one-to-one function. A one-to-one function means each output is produced by exactly one input.
For a linear function of the form [tex]\( f(x) = ax + b \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants, the function is one-to-one if [tex]\( a \neq 0 \)[/tex].
Here,
[tex]\[ f(x) = 8x + 7 \][/tex]
The coefficient [tex]\( a \)[/tex] is 8, which is not equal to zero. Therefore, the function [tex]\( f(x) = 8x + 7 \)[/tex] is indeed one-to-one and thus has an inverse.
To find the inverse function, we follow these steps:
1. Rewrite the function [tex]\( f(x) = y \)[/tex].
[tex]\[ y = 8x + 7 \][/tex]
2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to begin finding the inverse.
[tex]\[ x = 8y + 7 \][/tex]
3. Solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].
[tex]\[ x - 7 = 8y \][/tex]
[tex]\[ y = \frac{x - 7}{8} \][/tex]
4. Replace [tex]\( y \)[/tex] with [tex]\( f^{-1}(x) \)[/tex] to denote the inverse function.
[tex]\[ f^{-1}(x) = \frac{x - 7}{8} \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x - 7}{8} \][/tex]
Therefore:
- Yes, [tex]\( f \)[/tex] does have an inverse.
- The inverse function is [tex]\( f^{-1}(x) = \frac{x - 7}{8} \)[/tex].
For a linear function of the form [tex]\( f(x) = ax + b \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are constants, the function is one-to-one if [tex]\( a \neq 0 \)[/tex].
Here,
[tex]\[ f(x) = 8x + 7 \][/tex]
The coefficient [tex]\( a \)[/tex] is 8, which is not equal to zero. Therefore, the function [tex]\( f(x) = 8x + 7 \)[/tex] is indeed one-to-one and thus has an inverse.
To find the inverse function, we follow these steps:
1. Rewrite the function [tex]\( f(x) = y \)[/tex].
[tex]\[ y = 8x + 7 \][/tex]
2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to begin finding the inverse.
[tex]\[ x = 8y + 7 \][/tex]
3. Solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].
[tex]\[ x - 7 = 8y \][/tex]
[tex]\[ y = \frac{x - 7}{8} \][/tex]
4. Replace [tex]\( y \)[/tex] with [tex]\( f^{-1}(x) \)[/tex] to denote the inverse function.
[tex]\[ f^{-1}(x) = \frac{x - 7}{8} \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x - 7}{8} \][/tex]
Therefore:
- Yes, [tex]\( f \)[/tex] does have an inverse.
- The inverse function is [tex]\( f^{-1}(x) = \frac{x - 7}{8} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.