Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which combination of the rocket body and engine will result in an acceleration of [tex]\( 40 \, \text{m/s}^2 \)[/tex] at the start of the launch, we can use Newton's second law of motion. Newton's second law states:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons, N),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms, kg),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared, [tex]\(\text{m/s}^2\)[/tex]).
We are given the following:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Body} & \text{Mass (kg)} & \text{Engine} & \text{Force (N)} \\ \hline 1 & 0.50 & 1 & 25 \\ \hline 2 & 1.5 & 2 & 20 \\ \hline 3 & 0.75 & 3 & 30 \\ \hline \end{array} \][/tex]
To find the acceleration, we rearrange the formula to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{F}{m} \][/tex]
We need to check each combination of rocket body and engine to see which one results in an acceleration of [tex]\( 40 \, \text{m/s}^2 \)[/tex].
### Combination Calculations:
1. Body 1 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{0.50 \, \text{kg}} = 50 \, \text{m/s}^2 \][/tex]
2. Body 2 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{1.5 \, \text{kg}} = \frac{20}{1.5} \approx 13.33 \, \text{m/s}^2 \][/tex]
3. Body 3 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{0.75 \, \text{kg}} = 40 \, \text{m/s}^2 \][/tex]
4. Body 1 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{0.50 \, \text{kg}} = 40 \, \text{m/s}^2 \][/tex]
5. Body 1 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{0.50 \, \text{kg}} = 60 \, \text{m/s}^2 \][/tex]
6. Body 2 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{1.5 \, \text{kg}} \approx 16.67 \, \text{m/s}^2 \][/tex]
7. Body 3 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{0.75 \, \text{kg}} = \frac{20}{0.75} \approx 26.67 \, \text{m/s}^2 \][/tex]
8. Body 2 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{1.5 \, \text{kg}} = 20 \, \text{m/s}^2 \][/tex]
9. Body 3 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{0.75 \, \text{kg}} \approx 33.33 \, \text{m/s}^2 \][/tex]
From our calculations, the combinations that result in an acceleration of [tex]\( 40 \, \text{m/s}^2 \)[/tex] are:
- Body 3 + Engine 3
- Body 1 + Engine 2
Therefore, the best combination with [tex]\( 40 \, \text{m/s}^2 \)[/tex] acceleration considering practical solutions would be the combination Body 1 + Engine 2.
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons, N),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms, kg),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared, [tex]\(\text{m/s}^2\)[/tex]).
We are given the following:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Body} & \text{Mass (kg)} & \text{Engine} & \text{Force (N)} \\ \hline 1 & 0.50 & 1 & 25 \\ \hline 2 & 1.5 & 2 & 20 \\ \hline 3 & 0.75 & 3 & 30 \\ \hline \end{array} \][/tex]
To find the acceleration, we rearrange the formula to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{F}{m} \][/tex]
We need to check each combination of rocket body and engine to see which one results in an acceleration of [tex]\( 40 \, \text{m/s}^2 \)[/tex].
### Combination Calculations:
1. Body 1 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{0.50 \, \text{kg}} = 50 \, \text{m/s}^2 \][/tex]
2. Body 2 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{1.5 \, \text{kg}} = \frac{20}{1.5} \approx 13.33 \, \text{m/s}^2 \][/tex]
3. Body 3 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{0.75 \, \text{kg}} = 40 \, \text{m/s}^2 \][/tex]
4. Body 1 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{0.50 \, \text{kg}} = 40 \, \text{m/s}^2 \][/tex]
5. Body 1 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{0.50 \, \text{kg}} = 60 \, \text{m/s}^2 \][/tex]
6. Body 2 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{1.5 \, \text{kg}} \approx 16.67 \, \text{m/s}^2 \][/tex]
7. Body 3 + Engine 2:
[tex]\[ a = \frac{20 \, \text{N}}{0.75 \, \text{kg}} = \frac{20}{0.75} \approx 26.67 \, \text{m/s}^2 \][/tex]
8. Body 2 + Engine 3:
[tex]\[ a = \frac{30 \, \text{N}}{1.5 \, \text{kg}} = 20 \, \text{m/s}^2 \][/tex]
9. Body 3 + Engine 1:
[tex]\[ a = \frac{25 \, \text{N}}{0.75 \, \text{kg}} \approx 33.33 \, \text{m/s}^2 \][/tex]
From our calculations, the combinations that result in an acceleration of [tex]\( 40 \, \text{m/s}^2 \)[/tex] are:
- Body 3 + Engine 3
- Body 1 + Engine 2
Therefore, the best combination with [tex]\( 40 \, \text{m/s}^2 \)[/tex] acceleration considering practical solutions would be the combination Body 1 + Engine 2.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.