Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the time it takes for an IV drug with a half-life of 3 hours to reach approximately 98.5% of its steady-state concentration, we can use the following steps:
1. Understanding the half-life and steady-state concentration:
- The half-life of the drug is the time it takes for the concentration of the drug in the bloodstream to reduce by half.
- The steady-state concentration is the point at which the rate of drug administration equals the rate of drug elimination.
2. Determining the relevant variables:
- Half-life ([tex]\( t_{1/2} \)[/tex]) = 3 hours
- Desired steady-state percentage = 98.5%
3. Conversion to decimal for calculations:
- Steady-state fraction ([tex]\( \text{fraction} \)[/tex]) = 98.5%/100 = 0.985
4. Using the formula to find the time to reach a certain percentage of steady-state:
The formula to calculate the time to reach a specific percentage of the steady-state concentration for a drug with a given half-life is:
[tex]\[ t = \left( \frac{ t_{1/2} \cdot \ln \left( \frac{1}{1 - \text{fraction}} \right)}{\ln(2)} \right) \][/tex]
Here:
- [tex]\( t \)[/tex] is the time to reach the desired fraction of steady-state concentration.
- [tex]\( t_{1/2} \)[/tex] is the half-life of the drug.
- [tex]\( \ln \)[/tex] represents the natural logarithm function.
- Fraction is the decimal representation of the desired steady-state percentage.
5. Plugging in the values:
[tex]\[ t = \left( \frac{3 \cdot \ln \left( \frac{1}{1 - 0.985} \right)}{\ln(2)} \right) \][/tex]
6. Solving the equation:
[tex]\[ t \approx 18.176681067160704 \text{ hours} \][/tex]
7. Rounding to the nearest whole number:
- Since the question requests the answer as a WHOLE number, we round 18.176681067160704 to the nearest whole number.
Thus, the time it takes for the drug to reach approximately 98.5% of its steady-state concentration is:
[tex]\[ \boxed{18} \][/tex] hours.
1. Understanding the half-life and steady-state concentration:
- The half-life of the drug is the time it takes for the concentration of the drug in the bloodstream to reduce by half.
- The steady-state concentration is the point at which the rate of drug administration equals the rate of drug elimination.
2. Determining the relevant variables:
- Half-life ([tex]\( t_{1/2} \)[/tex]) = 3 hours
- Desired steady-state percentage = 98.5%
3. Conversion to decimal for calculations:
- Steady-state fraction ([tex]\( \text{fraction} \)[/tex]) = 98.5%/100 = 0.985
4. Using the formula to find the time to reach a certain percentage of steady-state:
The formula to calculate the time to reach a specific percentage of the steady-state concentration for a drug with a given half-life is:
[tex]\[ t = \left( \frac{ t_{1/2} \cdot \ln \left( \frac{1}{1 - \text{fraction}} \right)}{\ln(2)} \right) \][/tex]
Here:
- [tex]\( t \)[/tex] is the time to reach the desired fraction of steady-state concentration.
- [tex]\( t_{1/2} \)[/tex] is the half-life of the drug.
- [tex]\( \ln \)[/tex] represents the natural logarithm function.
- Fraction is the decimal representation of the desired steady-state percentage.
5. Plugging in the values:
[tex]\[ t = \left( \frac{3 \cdot \ln \left( \frac{1}{1 - 0.985} \right)}{\ln(2)} \right) \][/tex]
6. Solving the equation:
[tex]\[ t \approx 18.176681067160704 \text{ hours} \][/tex]
7. Rounding to the nearest whole number:
- Since the question requests the answer as a WHOLE number, we round 18.176681067160704 to the nearest whole number.
Thus, the time it takes for the drug to reach approximately 98.5% of its steady-state concentration is:
[tex]\[ \boxed{18} \][/tex] hours.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.