Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine whether the function [tex]\( f(x) = \frac{4x + 5}{5x + 7} \)[/tex] has an inverse, we can follow these steps:
1. Check if the function can be inverted: A function [tex]\( f(x) \)[/tex] has an inverse if it is one-to-one (bijective). For rational functions like this one, we typically find the inverse function by solving [tex]\( y = f(x) \)[/tex] for [tex]\( x \)[/tex].
2. Express y in terms of x: Start by expressing the given function in a general form:
[tex]\[ y = \frac{4x + 5}{5x + 7} \][/tex]
3. Solve for x: To find the inverse, solve this equation for [tex]\( x \)[/tex]. Begin by clearing the fraction by multiplying both sides by [tex]\( 5x + 7 \)[/tex]:
[tex]\[ y(5x + 7) = 4x + 5 \][/tex]
4. Distribute y:
[tex]\[ 5xy + 7y = 4x + 5 \][/tex]
5. Group the terms involving x on one side and the constant terms on the other side:
[tex]\[ 5xy - 4x = 5 - 7y \][/tex]
6. Factor out x:
[tex]\[ x(5y - 4) = 5 - 7y \][/tex]
7. Solve for x by dividing both sides by [tex]\( 5y - 4 \)[/tex]:
[tex]\[ x = \frac{5 - 7y}{5y - 4} \][/tex]
8. Replace y by x to get the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{5 - 7x}{5x - 4} \][/tex]
Therefore, the function [tex]\( f(x) = \frac{4x + 5}{5x + 7} \)[/tex] does indeed have an inverse, and the inverse function is given by:
[tex]\[ f^{-1}(x) = \frac{5 - 7x}{5x - 4} \][/tex]
1. Check if the function can be inverted: A function [tex]\( f(x) \)[/tex] has an inverse if it is one-to-one (bijective). For rational functions like this one, we typically find the inverse function by solving [tex]\( y = f(x) \)[/tex] for [tex]\( x \)[/tex].
2. Express y in terms of x: Start by expressing the given function in a general form:
[tex]\[ y = \frac{4x + 5}{5x + 7} \][/tex]
3. Solve for x: To find the inverse, solve this equation for [tex]\( x \)[/tex]. Begin by clearing the fraction by multiplying both sides by [tex]\( 5x + 7 \)[/tex]:
[tex]\[ y(5x + 7) = 4x + 5 \][/tex]
4. Distribute y:
[tex]\[ 5xy + 7y = 4x + 5 \][/tex]
5. Group the terms involving x on one side and the constant terms on the other side:
[tex]\[ 5xy - 4x = 5 - 7y \][/tex]
6. Factor out x:
[tex]\[ x(5y - 4) = 5 - 7y \][/tex]
7. Solve for x by dividing both sides by [tex]\( 5y - 4 \)[/tex]:
[tex]\[ x = \frac{5 - 7y}{5y - 4} \][/tex]
8. Replace y by x to get the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{5 - 7x}{5x - 4} \][/tex]
Therefore, the function [tex]\( f(x) = \frac{4x + 5}{5x + 7} \)[/tex] does indeed have an inverse, and the inverse function is given by:
[tex]\[ f^{-1}(x) = \frac{5 - 7x}{5x - 4} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.