Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To graph the piecewise function
[tex]\[ r(x) = \begin{cases} 1 & \text{if } x < -1 \\ -4 & \text{if } x \geq -1 \end{cases} \][/tex]
we need to break it down into the two different parts specified by the piecewise definition:
1. For [tex]\( x < -1 \)[/tex]:
The value of [tex]\( r(x) \)[/tex] is 1.
This part of the function is a horizontal line at [tex]\( r(x) = 1 \)[/tex] for all values of [tex]\( x \)[/tex] that are strictly less than -1.
2. For [tex]\( x \geq -1 \)[/tex]:
The value of [tex]\( r(x) \)[/tex] is -4.
This part of the function is a horizontal line at [tex]\( r(x) = -4 \)[/tex] for all values of [tex]\( x \)[/tex] that are greater than or equal to -1.
Now let's graph this step by step:
### Step-by-Step Graphing:
1. Draw a horizontal line at [tex]\( r(x) = 1 \)[/tex] for values of [tex]\( x \)[/tex] less than -1. This line is continuous to the left side of [tex]\( x = -1 \)[/tex] but it does not include [tex]\( x = -1 \)[/tex]. To indicate that the point [tex]\((-1, 1)\)[/tex] is not included, we use an open circle at [tex]\( x = -1 \)[/tex].
2. Draw a horizontal line at [tex]\( r(x) = -4 \)[/tex] for values of [tex]\( x \)[/tex] greater than or equal to -1. We start this part of the graph at [tex]\((-1, -4)\)[/tex] and use a closed circle at [tex]\( x = -1 \)[/tex] to indicate that this point is included in the graph.
Combining these steps, the correct piecewise graph will show:
- An open circle at [tex]\( (-1, 1) \)[/tex] and a horizontal line extending to the left for [tex]\( x < -1 \)[/tex] at the height 1.
- A closed circle at [tex]\( (-1, -4) \)[/tex] and a horizontal line extending to the right for [tex]\( x \geq -1 \)[/tex] at the height -4.
Based on this explanation, you need a graph that matches these characteristics.
If shown with options A, B, C, and D:
- Select the graph that correctly represents these conditions with an open circle at [tex]\( (-1, 1) \)[/tex], a horizontal line for [tex]\( x < -1 \)[/tex] at [tex]\( y = 1 \)[/tex], a closed circle at [tex]\( (-1, -4) \)[/tex], and a horizontal line for [tex]\( x \geq -1 \)[/tex] at [tex]\( y = -4 \)[/tex].
[tex]\[ r(x) = \begin{cases} 1 & \text{if } x < -1 \\ -4 & \text{if } x \geq -1 \end{cases} \][/tex]
we need to break it down into the two different parts specified by the piecewise definition:
1. For [tex]\( x < -1 \)[/tex]:
The value of [tex]\( r(x) \)[/tex] is 1.
This part of the function is a horizontal line at [tex]\( r(x) = 1 \)[/tex] for all values of [tex]\( x \)[/tex] that are strictly less than -1.
2. For [tex]\( x \geq -1 \)[/tex]:
The value of [tex]\( r(x) \)[/tex] is -4.
This part of the function is a horizontal line at [tex]\( r(x) = -4 \)[/tex] for all values of [tex]\( x \)[/tex] that are greater than or equal to -1.
Now let's graph this step by step:
### Step-by-Step Graphing:
1. Draw a horizontal line at [tex]\( r(x) = 1 \)[/tex] for values of [tex]\( x \)[/tex] less than -1. This line is continuous to the left side of [tex]\( x = -1 \)[/tex] but it does not include [tex]\( x = -1 \)[/tex]. To indicate that the point [tex]\((-1, 1)\)[/tex] is not included, we use an open circle at [tex]\( x = -1 \)[/tex].
2. Draw a horizontal line at [tex]\( r(x) = -4 \)[/tex] for values of [tex]\( x \)[/tex] greater than or equal to -1. We start this part of the graph at [tex]\((-1, -4)\)[/tex] and use a closed circle at [tex]\( x = -1 \)[/tex] to indicate that this point is included in the graph.
Combining these steps, the correct piecewise graph will show:
- An open circle at [tex]\( (-1, 1) \)[/tex] and a horizontal line extending to the left for [tex]\( x < -1 \)[/tex] at the height 1.
- A closed circle at [tex]\( (-1, -4) \)[/tex] and a horizontal line extending to the right for [tex]\( x \geq -1 \)[/tex] at the height -4.
Based on this explanation, you need a graph that matches these characteristics.
If shown with options A, B, C, and D:
- Select the graph that correctly represents these conditions with an open circle at [tex]\( (-1, 1) \)[/tex], a horizontal line for [tex]\( x < -1 \)[/tex] at [tex]\( y = 1 \)[/tex], a closed circle at [tex]\( (-1, -4) \)[/tex], and a horizontal line for [tex]\( x \geq -1 \)[/tex] at [tex]\( y = -4 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.