Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve this step-by-step:
a) The normal force acting on the box:
Given:
- Mass [tex]\( M = 45 \)[/tex] kg
- Angle [tex]\( \theta = 25 \)[/tex] degrees
The normal force is the component of the weight perpendicular to the inclined plane. It is given by:
[tex]\[ \text{Normal force} = M \cdot g \cdot \cos(\theta) \][/tex]
Using the values:
[tex]\[ M = 45 \text{ kg} \][/tex]
[tex]\[ g = 9.81 \text{ m/s}^2 \][/tex]
[tex]\[ \theta = 25 \text{ degrees} \][/tex]
First, convert the angle to radians:
[tex]\[ \theta_{rad} = \frac{25 \times \pi}{180} \][/tex]
Then, calculate:
[tex]\[ \text{Normal force} \approx 400.09 \text{ N} \][/tex]
b) The frictional force acting on the box:
Assuming the coefficient of friction [tex]\( \mu = 0.3 \)[/tex]:
Frictional force is given by:
[tex]\[ \text{Frictional force} = \mu \cdot \text{Normal force} \][/tex]
Using the normal force calculated previously:
[tex]\[ \text{Frictional force} \approx 0.3 \times 400.09 \][/tex]
[tex]\[ \text{Frictional force} \approx 120.03 \text{ N} \][/tex]
c) The weight of the box:
Weight [tex]\( W \)[/tex] is given by:
[tex]\[ W = M \cdot g \][/tex]
Using the values:
[tex]\[ M = 45 \text{ kg} \][/tex]
[tex]\[ g = 9.81 \text{ m/s}^2 \][/tex]
Calculate the weight:
[tex]\[ W \approx 45 \times 9.81 \][/tex]
[tex]\[ W \approx 441.45 \text{ N} \][/tex]
d) The net horizontal force on the box:
Given:
- Applied force [tex]\( P = 100 \)[/tex] N
The net horizontal force is given by:
[tex]\[ \text{Net horizontal force} = P - \text{Frictional force} \][/tex]
Using the frictional force calculated previously:
[tex]\[ \text{Net horizontal force} \approx 100 - 120.03 \][/tex]
[tex]\[ \text{Net horizontal force} \approx -20.03 \text{ N} \][/tex]
The negative sign indicates that the frictional force is greater than the applied force in the opposite direction.
e) The net vertical force on the box:
The net vertical force is given by the component of the weight parallel to the inclined plane:
[tex]\[ \text{Net vertical force} = W \cdot \sin(\theta) \][/tex]
Using the weight calculated previously:
[tex]\[ \text{Net vertical force} \approx 441.45 \times \sin(25^\circ) \][/tex]
Calculate:
[tex]\[ \text{Net vertical force} \approx 186.56 \text{ N} \][/tex]
So, the magnitudes for the given forces are:
a) The normal force [tex]\( \approx 400.09 \text{ N} \)[/tex]
b) The frictional force [tex]\( \approx 120.03 \text{ N} \)[/tex]
c) The weight of the box [tex]\( \approx 441.45 \text{ N} \)[/tex]
d) The net horizontal force [tex]\( \approx -20.03 \text{ N} \)[/tex]
e) The net vertical force [tex]\( \approx 186.56 \text{ N} \)[/tex]
a) The normal force acting on the box:
Given:
- Mass [tex]\( M = 45 \)[/tex] kg
- Angle [tex]\( \theta = 25 \)[/tex] degrees
The normal force is the component of the weight perpendicular to the inclined plane. It is given by:
[tex]\[ \text{Normal force} = M \cdot g \cdot \cos(\theta) \][/tex]
Using the values:
[tex]\[ M = 45 \text{ kg} \][/tex]
[tex]\[ g = 9.81 \text{ m/s}^2 \][/tex]
[tex]\[ \theta = 25 \text{ degrees} \][/tex]
First, convert the angle to radians:
[tex]\[ \theta_{rad} = \frac{25 \times \pi}{180} \][/tex]
Then, calculate:
[tex]\[ \text{Normal force} \approx 400.09 \text{ N} \][/tex]
b) The frictional force acting on the box:
Assuming the coefficient of friction [tex]\( \mu = 0.3 \)[/tex]:
Frictional force is given by:
[tex]\[ \text{Frictional force} = \mu \cdot \text{Normal force} \][/tex]
Using the normal force calculated previously:
[tex]\[ \text{Frictional force} \approx 0.3 \times 400.09 \][/tex]
[tex]\[ \text{Frictional force} \approx 120.03 \text{ N} \][/tex]
c) The weight of the box:
Weight [tex]\( W \)[/tex] is given by:
[tex]\[ W = M \cdot g \][/tex]
Using the values:
[tex]\[ M = 45 \text{ kg} \][/tex]
[tex]\[ g = 9.81 \text{ m/s}^2 \][/tex]
Calculate the weight:
[tex]\[ W \approx 45 \times 9.81 \][/tex]
[tex]\[ W \approx 441.45 \text{ N} \][/tex]
d) The net horizontal force on the box:
Given:
- Applied force [tex]\( P = 100 \)[/tex] N
The net horizontal force is given by:
[tex]\[ \text{Net horizontal force} = P - \text{Frictional force} \][/tex]
Using the frictional force calculated previously:
[tex]\[ \text{Net horizontal force} \approx 100 - 120.03 \][/tex]
[tex]\[ \text{Net horizontal force} \approx -20.03 \text{ N} \][/tex]
The negative sign indicates that the frictional force is greater than the applied force in the opposite direction.
e) The net vertical force on the box:
The net vertical force is given by the component of the weight parallel to the inclined plane:
[tex]\[ \text{Net vertical force} = W \cdot \sin(\theta) \][/tex]
Using the weight calculated previously:
[tex]\[ \text{Net vertical force} \approx 441.45 \times \sin(25^\circ) \][/tex]
Calculate:
[tex]\[ \text{Net vertical force} \approx 186.56 \text{ N} \][/tex]
So, the magnitudes for the given forces are:
a) The normal force [tex]\( \approx 400.09 \text{ N} \)[/tex]
b) The frictional force [tex]\( \approx 120.03 \text{ N} \)[/tex]
c) The weight of the box [tex]\( \approx 441.45 \text{ N} \)[/tex]
d) The net horizontal force [tex]\( \approx -20.03 \text{ N} \)[/tex]
e) The net vertical force [tex]\( \approx 186.56 \text{ N} \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.