Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine whether being from California and preferring brand [tex]$A$[/tex] are independent events, we need to compare two probabilities:
1. [tex]\( P(\text{California}) \)[/tex]: The probability that a randomly selected person is from California.
2. [tex]\( P(\text{California} \mid \text{brand A}) \)[/tex]: The probability that a person is from California given that they prefer brand [tex]$A$[/tex].
If these two probabilities are equal, the events are independent. Otherwise, they are not.
### Step-by-Step Solution:
1. Calculate [tex]\( P(\text{California}) \)[/tex]:
[tex]\[ P(\text{California}) = \frac{\text{Number of California people}}{\text{Total number of people}} = \frac{150}{275} \approx 0.5454545454545454 \][/tex]
2. Calculate [tex]\( P(\text{California} \mid \text{brand A}) \)[/tex]:
[tex]\[ P(\text{California} \mid \text{brand A}) = \frac{\text{Number of people from California who prefer brand A}}{\text{Total number of people who prefer brand A}} = \frac{96}{176} \approx 0.5454545454545454 \][/tex]
3. Compare the probabilities:
[tex]\[ P(\text{California}) \approx 0.55 \][/tex]
[tex]\[ P(\text{California} \mid \text{brand A}) \approx 0.55 \][/tex]
Since [tex]\( P(\text{California}) \)[/tex] is approximately equal to [tex]\( P(\text{California} \mid \text{brand A}) \)[/tex], the two events (being from California and preferring brand A) are independent.
### Conclusion:
The correct answer is:
B. Yes, they are independent because [tex]\( P(\text{California}) \approx 0.55 \)[/tex] and [tex]\( P(\text{California} \mid \text{brand A}) \approx 0.55 \)[/tex].
1. [tex]\( P(\text{California}) \)[/tex]: The probability that a randomly selected person is from California.
2. [tex]\( P(\text{California} \mid \text{brand A}) \)[/tex]: The probability that a person is from California given that they prefer brand [tex]$A$[/tex].
If these two probabilities are equal, the events are independent. Otherwise, they are not.
### Step-by-Step Solution:
1. Calculate [tex]\( P(\text{California}) \)[/tex]:
[tex]\[ P(\text{California}) = \frac{\text{Number of California people}}{\text{Total number of people}} = \frac{150}{275} \approx 0.5454545454545454 \][/tex]
2. Calculate [tex]\( P(\text{California} \mid \text{brand A}) \)[/tex]:
[tex]\[ P(\text{California} \mid \text{brand A}) = \frac{\text{Number of people from California who prefer brand A}}{\text{Total number of people who prefer brand A}} = \frac{96}{176} \approx 0.5454545454545454 \][/tex]
3. Compare the probabilities:
[tex]\[ P(\text{California}) \approx 0.55 \][/tex]
[tex]\[ P(\text{California} \mid \text{brand A}) \approx 0.55 \][/tex]
Since [tex]\( P(\text{California}) \)[/tex] is approximately equal to [tex]\( P(\text{California} \mid \text{brand A}) \)[/tex], the two events (being from California and preferring brand A) are independent.
### Conclusion:
The correct answer is:
B. Yes, they are independent because [tex]\( P(\text{California}) \approx 0.55 \)[/tex] and [tex]\( P(\text{California} \mid \text{brand A}) \approx 0.55 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.