Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's tackle the given problems one by one.
### Problem 1: Finding the equation of a line parallel to [tex]\( y = 3x + 5 \)[/tex] passing through the point [tex]\( (5, 9) \)[/tex].
Firstly, recall the point-slope form of a line's equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope.
Since we are looking for a line parallel to [tex]\(y = 3x + 5\)[/tex], it will have the same slope. The slope ([tex]\(m\)[/tex]) of the given line [tex]\(y = 3x + 5\)[/tex] is [tex]\(3\)[/tex].
We are also given the point [tex]\((5,9)\)[/tex] through which the new line passes. Let's use this point and the slope [tex]\(3\)[/tex] in the point-slope form:
[tex]\[ y - 9 = 3(x - 5) \][/tex]
So, the equation of the line parallel to [tex]\(y=3x+5\)[/tex] and passing through [tex]\((5,9)\)[/tex] is:
[tex]\[ y - 9 = 3(x - 5) \][/tex]
### Problem 2: Finding the equation of a line parallel to [tex]\( y = \frac{1}{2} x \)[/tex] with a [tex]\( y \)[/tex]-intercept of [tex]\((0, 4)\)[/tex] in slope-intercept form.
Firstly, recall the slope-intercept form of a line's equation:
[tex]\[ y = mx + b \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the [tex]\(y\)[/tex]-intercept.
The given line is [tex]\( y = \frac{1}{2}x \)[/tex]. This line has a slope ([tex]\(m\)[/tex]) of [tex]\(\frac{1}{2}\)[/tex].
We want a line parallel to this slope with a [tex]\( y \)[/tex]-intercept [tex]\( (0, 4) \)[/tex]. Thus, the intercept [tex]\( b \)[/tex] for our new line is [tex]\(4\)[/tex].
Now, using the slope [tex]\( \frac{1}{2} \)[/tex] and the intercept [tex]\( 4 \)[/tex], we can write the equation of the line in slope-intercept form:
[tex]\[ y = \frac{1}{2}x + 4 \][/tex]
So, the equation of the line parallel to [tex]\( y = \frac{1}{2} x \)[/tex] with a [tex]\( y \)[/tex]-intercept of [tex]\(0, 4\)[/tex] is:
[tex]\[ y = \frac{1}{2} x + 4 \][/tex]
### Problem 1: Finding the equation of a line parallel to [tex]\( y = 3x + 5 \)[/tex] passing through the point [tex]\( (5, 9) \)[/tex].
Firstly, recall the point-slope form of a line's equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope.
Since we are looking for a line parallel to [tex]\(y = 3x + 5\)[/tex], it will have the same slope. The slope ([tex]\(m\)[/tex]) of the given line [tex]\(y = 3x + 5\)[/tex] is [tex]\(3\)[/tex].
We are also given the point [tex]\((5,9)\)[/tex] through which the new line passes. Let's use this point and the slope [tex]\(3\)[/tex] in the point-slope form:
[tex]\[ y - 9 = 3(x - 5) \][/tex]
So, the equation of the line parallel to [tex]\(y=3x+5\)[/tex] and passing through [tex]\((5,9)\)[/tex] is:
[tex]\[ y - 9 = 3(x - 5) \][/tex]
### Problem 2: Finding the equation of a line parallel to [tex]\( y = \frac{1}{2} x \)[/tex] with a [tex]\( y \)[/tex]-intercept of [tex]\((0, 4)\)[/tex] in slope-intercept form.
Firstly, recall the slope-intercept form of a line's equation:
[tex]\[ y = mx + b \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the [tex]\(y\)[/tex]-intercept.
The given line is [tex]\( y = \frac{1}{2}x \)[/tex]. This line has a slope ([tex]\(m\)[/tex]) of [tex]\(\frac{1}{2}\)[/tex].
We want a line parallel to this slope with a [tex]\( y \)[/tex]-intercept [tex]\( (0, 4) \)[/tex]. Thus, the intercept [tex]\( b \)[/tex] for our new line is [tex]\(4\)[/tex].
Now, using the slope [tex]\( \frac{1}{2} \)[/tex] and the intercept [tex]\( 4 \)[/tex], we can write the equation of the line in slope-intercept form:
[tex]\[ y = \frac{1}{2}x + 4 \][/tex]
So, the equation of the line parallel to [tex]\( y = \frac{1}{2} x \)[/tex] with a [tex]\( y \)[/tex]-intercept of [tex]\(0, 4\)[/tex] is:
[tex]\[ y = \frac{1}{2} x + 4 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.