Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\(\sin(2 \theta) + \cos(\theta) = 0\)[/tex], let's proceed step by step:
### Step 1: Use a Trigonometric Identity
First, we recognize that we can use the double-angle identity for sine:
[tex]\[ \sin(2 \theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
### Step 2: Substitute the Identity into the Equation
Substitute [tex]\(\sin(2 \theta)\)[/tex] into the original equation:
[tex]\[ 2 \sin(\theta) \cos(\theta) + \cos(\theta) = 0 \][/tex]
### Step 3: Factor Out [tex]\(\cos(\theta)\)[/tex]
Factor [tex]\(\cos(\theta)\)[/tex] out of the equation:
[tex]\[ \cos(\theta) (2 \sin(\theta) + 1) = 0 \][/tex]
### Step 4: Solve the Factored Equation
Now, we have two separate equations to solve:
1. [tex]\(\cos(\theta) = 0\)[/tex]
2. [tex]\(2 \sin(\theta) + 1 = 0\)[/tex]
### Step 5: Solve [tex]\(\cos(\theta) = 0\)[/tex]
Solve the first equation:
[tex]\[ \cos(\theta) = 0 \][/tex]
The values of [tex]\(\theta\)[/tex] where this is true are:
[tex]\[ \theta = \frac{\pi}{2} + k \pi, \quad k \in \mathbb{Z} \][/tex]
For the interval [tex]\(-\pi \leq \theta < \pi\)[/tex], the solutions are:
[tex]\[ \theta = \frac{\pi}{2}, \quad \theta = -\frac{\pi}{2} \][/tex]
### Step 6: Solve [tex]\(2 \sin(\theta) + 1 = 0\)[/tex]
Solve the second equation:
[tex]\[ 2 \sin(\theta) + 1 = 0 \][/tex]
[tex]\[ 2 \sin(\theta) = -1 \][/tex]
[tex]\[ \sin(\theta) = -\frac{1}{2} \][/tex]
The solutions for [tex]\(\theta\)[/tex] where [tex]\(\sin(\theta) = -\frac{1}{2}\)[/tex] in the interval [tex]\(-\pi \leq \theta < \pi\)[/tex] are:
[tex]\[ \theta = -\frac{\pi}{6}, \quad \theta = -\frac{5\pi}{6} \][/tex]
### Step 7: Combine All Solutions
Combining all the solutions we found, we get:
[tex]\[ \theta = -\frac{5\pi}{6}, \quad -\frac{\pi}{2}, \quad -\frac{\pi}{6}, \quad \frac{\pi}{2} \][/tex]
Thus, the solutions to the equation [tex]\(\sin(2 \theta) + \cos(\theta) = 0\)[/tex] are:
[tex]\[ \theta = -\frac{5\pi}{6}, -\frac{\pi}{2}, -\frac{\pi}{6}, \frac{\pi}{2} \][/tex]
### Step 1: Use a Trigonometric Identity
First, we recognize that we can use the double-angle identity for sine:
[tex]\[ \sin(2 \theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
### Step 2: Substitute the Identity into the Equation
Substitute [tex]\(\sin(2 \theta)\)[/tex] into the original equation:
[tex]\[ 2 \sin(\theta) \cos(\theta) + \cos(\theta) = 0 \][/tex]
### Step 3: Factor Out [tex]\(\cos(\theta)\)[/tex]
Factor [tex]\(\cos(\theta)\)[/tex] out of the equation:
[tex]\[ \cos(\theta) (2 \sin(\theta) + 1) = 0 \][/tex]
### Step 4: Solve the Factored Equation
Now, we have two separate equations to solve:
1. [tex]\(\cos(\theta) = 0\)[/tex]
2. [tex]\(2 \sin(\theta) + 1 = 0\)[/tex]
### Step 5: Solve [tex]\(\cos(\theta) = 0\)[/tex]
Solve the first equation:
[tex]\[ \cos(\theta) = 0 \][/tex]
The values of [tex]\(\theta\)[/tex] where this is true are:
[tex]\[ \theta = \frac{\pi}{2} + k \pi, \quad k \in \mathbb{Z} \][/tex]
For the interval [tex]\(-\pi \leq \theta < \pi\)[/tex], the solutions are:
[tex]\[ \theta = \frac{\pi}{2}, \quad \theta = -\frac{\pi}{2} \][/tex]
### Step 6: Solve [tex]\(2 \sin(\theta) + 1 = 0\)[/tex]
Solve the second equation:
[tex]\[ 2 \sin(\theta) + 1 = 0 \][/tex]
[tex]\[ 2 \sin(\theta) = -1 \][/tex]
[tex]\[ \sin(\theta) = -\frac{1}{2} \][/tex]
The solutions for [tex]\(\theta\)[/tex] where [tex]\(\sin(\theta) = -\frac{1}{2}\)[/tex] in the interval [tex]\(-\pi \leq \theta < \pi\)[/tex] are:
[tex]\[ \theta = -\frac{\pi}{6}, \quad \theta = -\frac{5\pi}{6} \][/tex]
### Step 7: Combine All Solutions
Combining all the solutions we found, we get:
[tex]\[ \theta = -\frac{5\pi}{6}, \quad -\frac{\pi}{2}, \quad -\frac{\pi}{6}, \quad \frac{\pi}{2} \][/tex]
Thus, the solutions to the equation [tex]\(\sin(2 \theta) + \cos(\theta) = 0\)[/tex] are:
[tex]\[ \theta = -\frac{5\pi}{6}, -\frac{\pi}{2}, -\frac{\pi}{6}, \frac{\pi}{2} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.