Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze the given problem step by step. The goal is to find which option the expression [tex]\(\left(\frac{1}{8}\right)^4\)[/tex] is equivalent to.
1. Starting with the given expression:
[tex]\[ \left(\frac{1}{8}\right)^4 \][/tex]
2. Rewrite [tex]\(\frac{1}{8}\)[/tex] as a power of 8:
[tex]\[ \frac{1}{8} = 8^{-1} \][/tex]
Therefore:
[tex]\[ \left(\frac{1}{8}\right)^4 = \left(8^{-1}\right)^4 \][/tex]
3. Apply the power of a power rule [tex]\((a^m)^n = a^{mn}\)[/tex]:
[tex]\[ \left(8^{-1}\right)^4 = 8^{-4} \][/tex]
4. Convert 8 to a power of 2 (since [tex]\(8 = 2^3\)[/tex]):
[tex]\[ 8^{-4} = (2^3)^{-4} \][/tex]
5. Apply the power of a power rule again:
[tex]\[ (2^3)^{-4} = 2^{3 \cdot -4} = 2^{-12} \][/tex]
6. Compare with the given options:
- (1) [tex]\(4^{-8}\)[/tex]
- (3) [tex]\(8^{-2}\)[/tex]
- (2) [tex]\(2^{-12}\)[/tex]
- (4) [tex]\(32^{-1}\)[/tex]
We can see that:
[tex]\[ 2^{-12} \][/tex]
matches our transformed expression exactly.
Hence, the exponential expression [tex]\(\left(\frac{1}{8}\right)^4\)[/tex] is equivalent to [tex]\(2^{-12}\)[/tex], which corresponds to option (2).
1. Starting with the given expression:
[tex]\[ \left(\frac{1}{8}\right)^4 \][/tex]
2. Rewrite [tex]\(\frac{1}{8}\)[/tex] as a power of 8:
[tex]\[ \frac{1}{8} = 8^{-1} \][/tex]
Therefore:
[tex]\[ \left(\frac{1}{8}\right)^4 = \left(8^{-1}\right)^4 \][/tex]
3. Apply the power of a power rule [tex]\((a^m)^n = a^{mn}\)[/tex]:
[tex]\[ \left(8^{-1}\right)^4 = 8^{-4} \][/tex]
4. Convert 8 to a power of 2 (since [tex]\(8 = 2^3\)[/tex]):
[tex]\[ 8^{-4} = (2^3)^{-4} \][/tex]
5. Apply the power of a power rule again:
[tex]\[ (2^3)^{-4} = 2^{3 \cdot -4} = 2^{-12} \][/tex]
6. Compare with the given options:
- (1) [tex]\(4^{-8}\)[/tex]
- (3) [tex]\(8^{-2}\)[/tex]
- (2) [tex]\(2^{-12}\)[/tex]
- (4) [tex]\(32^{-1}\)[/tex]
We can see that:
[tex]\[ 2^{-12} \][/tex]
matches our transformed expression exactly.
Hence, the exponential expression [tex]\(\left(\frac{1}{8}\right)^4\)[/tex] is equivalent to [tex]\(2^{-12}\)[/tex], which corresponds to option (2).
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.