Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to find the zeros of the function [tex]\( y = -5(x-4)^2 + 10 \)[/tex] and then interpret what these zeros represent.
### Step-by-Step Solution:
1. Understand the Function:
The given function is [tex]\( y = -5(x-4)^2 + 10 \)[/tex]. This function describes the daily profit (in hundreds of dollars) of a taco food truck, where [tex]\( x \)[/tex] is the price of a taco (in dollars).
2. Find the Zeros:
Zeros of a function are the values of [tex]\( x \)[/tex] for which [tex]\( y = 0 \)[/tex]. So we set the function equal to zero:
[tex]\[ -5(x-4)^2 + 10 = 0 \][/tex]
3. Solve the Equation:
- First, isolate the quadratic term by subtracting 10 from both sides:
[tex]\[ -5(x-4)^2 = -10 \][/tex]
- Divide both sides by -5:
[tex]\[ (x-4)^2 = 2 \][/tex]
- Take the square root of both sides:
[tex]\[ x-4 = \pm \sqrt{2} \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 4 \pm \sqrt{2} \][/tex]
So the zeros are:
[tex]\[ x = 4 - \sqrt{2}, \quad x = 4 + \sqrt{2} \][/tex]
4. Approximate the Zeros:
- [tex]\( 4 - \sqrt{2} \approx 2.58 \)[/tex]
- [tex]\( 4 + \sqrt{2} \approx 5.41 \)[/tex]
Hence, the zeros of the function are [tex]\( x = 4 - \sqrt{2} \approx 2.58 \)[/tex] and [tex]\( x = 4 + \sqrt{2} \approx 5.41 \)[/tex].
5. Interpret the Zeros:
The zeros of the function represent the prices of tacos at which the daily profit of the food truck is [tex]$0.00. Since \( y \) represents the profit, the points where \( y = 0 \) indicate no profit. ### Answer Selection: - Zeros: A. \( x = 4 - \sqrt{2} \approx 2.58 \) and \( x = 4 + \sqrt{2} \approx 5.41 \) - Interpretation: C. The zeros are where the daily profit is $[/tex]0.00.
So, the selected answers are:
- A
- C
### Step-by-Step Solution:
1. Understand the Function:
The given function is [tex]\( y = -5(x-4)^2 + 10 \)[/tex]. This function describes the daily profit (in hundreds of dollars) of a taco food truck, where [tex]\( x \)[/tex] is the price of a taco (in dollars).
2. Find the Zeros:
Zeros of a function are the values of [tex]\( x \)[/tex] for which [tex]\( y = 0 \)[/tex]. So we set the function equal to zero:
[tex]\[ -5(x-4)^2 + 10 = 0 \][/tex]
3. Solve the Equation:
- First, isolate the quadratic term by subtracting 10 from both sides:
[tex]\[ -5(x-4)^2 = -10 \][/tex]
- Divide both sides by -5:
[tex]\[ (x-4)^2 = 2 \][/tex]
- Take the square root of both sides:
[tex]\[ x-4 = \pm \sqrt{2} \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 4 \pm \sqrt{2} \][/tex]
So the zeros are:
[tex]\[ x = 4 - \sqrt{2}, \quad x = 4 + \sqrt{2} \][/tex]
4. Approximate the Zeros:
- [tex]\( 4 - \sqrt{2} \approx 2.58 \)[/tex]
- [tex]\( 4 + \sqrt{2} \approx 5.41 \)[/tex]
Hence, the zeros of the function are [tex]\( x = 4 - \sqrt{2} \approx 2.58 \)[/tex] and [tex]\( x = 4 + \sqrt{2} \approx 5.41 \)[/tex].
5. Interpret the Zeros:
The zeros of the function represent the prices of tacos at which the daily profit of the food truck is [tex]$0.00. Since \( y \) represents the profit, the points where \( y = 0 \) indicate no profit. ### Answer Selection: - Zeros: A. \( x = 4 - \sqrt{2} \approx 2.58 \) and \( x = 4 + \sqrt{2} \approx 5.41 \) - Interpretation: C. The zeros are where the daily profit is $[/tex]0.00.
So, the selected answers are:
- A
- C
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.