Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to find the zeros of the function [tex]\( y = -5(x-4)^2 + 10 \)[/tex] and then interpret what these zeros represent.
### Step-by-Step Solution:
1. Understand the Function:
The given function is [tex]\( y = -5(x-4)^2 + 10 \)[/tex]. This function describes the daily profit (in hundreds of dollars) of a taco food truck, where [tex]\( x \)[/tex] is the price of a taco (in dollars).
2. Find the Zeros:
Zeros of a function are the values of [tex]\( x \)[/tex] for which [tex]\( y = 0 \)[/tex]. So we set the function equal to zero:
[tex]\[ -5(x-4)^2 + 10 = 0 \][/tex]
3. Solve the Equation:
- First, isolate the quadratic term by subtracting 10 from both sides:
[tex]\[ -5(x-4)^2 = -10 \][/tex]
- Divide both sides by -5:
[tex]\[ (x-4)^2 = 2 \][/tex]
- Take the square root of both sides:
[tex]\[ x-4 = \pm \sqrt{2} \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 4 \pm \sqrt{2} \][/tex]
So the zeros are:
[tex]\[ x = 4 - \sqrt{2}, \quad x = 4 + \sqrt{2} \][/tex]
4. Approximate the Zeros:
- [tex]\( 4 - \sqrt{2} \approx 2.58 \)[/tex]
- [tex]\( 4 + \sqrt{2} \approx 5.41 \)[/tex]
Hence, the zeros of the function are [tex]\( x = 4 - \sqrt{2} \approx 2.58 \)[/tex] and [tex]\( x = 4 + \sqrt{2} \approx 5.41 \)[/tex].
5. Interpret the Zeros:
The zeros of the function represent the prices of tacos at which the daily profit of the food truck is [tex]$0.00. Since \( y \) represents the profit, the points where \( y = 0 \) indicate no profit. ### Answer Selection: - Zeros: A. \( x = 4 - \sqrt{2} \approx 2.58 \) and \( x = 4 + \sqrt{2} \approx 5.41 \) - Interpretation: C. The zeros are where the daily profit is $[/tex]0.00.
So, the selected answers are:
- A
- C
### Step-by-Step Solution:
1. Understand the Function:
The given function is [tex]\( y = -5(x-4)^2 + 10 \)[/tex]. This function describes the daily profit (in hundreds of dollars) of a taco food truck, where [tex]\( x \)[/tex] is the price of a taco (in dollars).
2. Find the Zeros:
Zeros of a function are the values of [tex]\( x \)[/tex] for which [tex]\( y = 0 \)[/tex]. So we set the function equal to zero:
[tex]\[ -5(x-4)^2 + 10 = 0 \][/tex]
3. Solve the Equation:
- First, isolate the quadratic term by subtracting 10 from both sides:
[tex]\[ -5(x-4)^2 = -10 \][/tex]
- Divide both sides by -5:
[tex]\[ (x-4)^2 = 2 \][/tex]
- Take the square root of both sides:
[tex]\[ x-4 = \pm \sqrt{2} \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 4 \pm \sqrt{2} \][/tex]
So the zeros are:
[tex]\[ x = 4 - \sqrt{2}, \quad x = 4 + \sqrt{2} \][/tex]
4. Approximate the Zeros:
- [tex]\( 4 - \sqrt{2} \approx 2.58 \)[/tex]
- [tex]\( 4 + \sqrt{2} \approx 5.41 \)[/tex]
Hence, the zeros of the function are [tex]\( x = 4 - \sqrt{2} \approx 2.58 \)[/tex] and [tex]\( x = 4 + \sqrt{2} \approx 5.41 \)[/tex].
5. Interpret the Zeros:
The zeros of the function represent the prices of tacos at which the daily profit of the food truck is [tex]$0.00. Since \( y \) represents the profit, the points where \( y = 0 \) indicate no profit. ### Answer Selection: - Zeros: A. \( x = 4 - \sqrt{2} \approx 2.58 \) and \( x = 4 + \sqrt{2} \approx 5.41 \) - Interpretation: C. The zeros are where the daily profit is $[/tex]0.00.
So, the selected answers are:
- A
- C
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.