At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the [tex]\( y \)[/tex]-intercept of a logarithmic function, we need to compute the value of the function when [tex]\( x = 0 \)[/tex]. Let's evaluate each option one by one.
### Option A: [tex]\( f(x) = \log(x + 1) - 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 + 1) - 1 = \log(1) - 1 \][/tex]
Since [tex]\( \log(1) = 0 \)[/tex]:
[tex]\[ f(0) = 0 - 1 = -1 \][/tex]
Thus, this function has a [tex]\( y \)[/tex]-intercept at [tex]\( (0, -1) \)[/tex].
### Option B: [tex]\( f(x) = \log x + 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0) + 1 \][/tex]
The logarithm of zero, [tex]\( \log(0) \)[/tex], is undefined because the logarithm function is only defined for positive real numbers. Hence, this function does not have a [tex]\( y \)[/tex]-intercept.
### Option C: [tex]\( f(x) = \log(x - 1) + 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 - 1) + 1 = \log(-1) + 1 \][/tex]
The logarithm of a negative number, [tex]\( \log(-1) \)[/tex], is also undefined for real numbers. Therefore, this function does not have a [tex]\( y \)[/tex]-intercept.
### Option D: [tex]\( f(x) = \log(x - 1) - 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 - 1) - 1 = \log(-1) - 1 \][/tex]
The logarithm of a negative number, [tex]\( \log(-1) \)[/tex], is undefined for real numbers. Thus, this function does not have a [tex]\( y \)[/tex]-intercept.
### Conclusion
After evaluating each option, we see that only option A, [tex]\( f(x) = \log(x + 1) - 1 \)[/tex], has a [tex]\( y \)[/tex]-intercept. The other functions involve logarithms of zero or negative numbers, which are not defined in the real number system.
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
### Option A: [tex]\( f(x) = \log(x + 1) - 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 + 1) - 1 = \log(1) - 1 \][/tex]
Since [tex]\( \log(1) = 0 \)[/tex]:
[tex]\[ f(0) = 0 - 1 = -1 \][/tex]
Thus, this function has a [tex]\( y \)[/tex]-intercept at [tex]\( (0, -1) \)[/tex].
### Option B: [tex]\( f(x) = \log x + 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0) + 1 \][/tex]
The logarithm of zero, [tex]\( \log(0) \)[/tex], is undefined because the logarithm function is only defined for positive real numbers. Hence, this function does not have a [tex]\( y \)[/tex]-intercept.
### Option C: [tex]\( f(x) = \log(x - 1) + 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 - 1) + 1 = \log(-1) + 1 \][/tex]
The logarithm of a negative number, [tex]\( \log(-1) \)[/tex], is also undefined for real numbers. Therefore, this function does not have a [tex]\( y \)[/tex]-intercept.
### Option D: [tex]\( f(x) = \log(x - 1) - 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 - 1) - 1 = \log(-1) - 1 \][/tex]
The logarithm of a negative number, [tex]\( \log(-1) \)[/tex], is undefined for real numbers. Thus, this function does not have a [tex]\( y \)[/tex]-intercept.
### Conclusion
After evaluating each option, we see that only option A, [tex]\( f(x) = \log(x + 1) - 1 \)[/tex], has a [tex]\( y \)[/tex]-intercept. The other functions involve logarithms of zero or negative numbers, which are not defined in the real number system.
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.