At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Which logarithmic function has a [tex]\( y \)[/tex]-intercept?

A. [tex]\( f(x) = \log (x+1) - 1 \)[/tex]
B. [tex]\( f(x) = \log x + 1 \)[/tex]
C. [tex]\( f(x) = \log (x-1) + 1 \)[/tex]
D. [tex]\( f(x) = \log (x-1) - 1 \)[/tex]


Sagot :

To find the [tex]\( y \)[/tex]-intercept of a logarithmic function, we need to compute the value of the function when [tex]\( x = 0 \)[/tex]. Let's evaluate each option one by one.

### Option A: [tex]\( f(x) = \log(x + 1) - 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:

[tex]\[ f(0) = \log(0 + 1) - 1 = \log(1) - 1 \][/tex]

Since [tex]\( \log(1) = 0 \)[/tex]:

[tex]\[ f(0) = 0 - 1 = -1 \][/tex]

Thus, this function has a [tex]\( y \)[/tex]-intercept at [tex]\( (0, -1) \)[/tex].

### Option B: [tex]\( f(x) = \log x + 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:

[tex]\[ f(0) = \log(0) + 1 \][/tex]

The logarithm of zero, [tex]\( \log(0) \)[/tex], is undefined because the logarithm function is only defined for positive real numbers. Hence, this function does not have a [tex]\( y \)[/tex]-intercept.

### Option C: [tex]\( f(x) = \log(x - 1) + 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:

[tex]\[ f(0) = \log(0 - 1) + 1 = \log(-1) + 1 \][/tex]

The logarithm of a negative number, [tex]\( \log(-1) \)[/tex], is also undefined for real numbers. Therefore, this function does not have a [tex]\( y \)[/tex]-intercept.

### Option D: [tex]\( f(x) = \log(x - 1) - 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:

[tex]\[ f(0) = \log(0 - 1) - 1 = \log(-1) - 1 \][/tex]

The logarithm of a negative number, [tex]\( \log(-1) \)[/tex], is undefined for real numbers. Thus, this function does not have a [tex]\( y \)[/tex]-intercept.

### Conclusion
After evaluating each option, we see that only option A, [tex]\( f(x) = \log(x + 1) - 1 \)[/tex], has a [tex]\( y \)[/tex]-intercept. The other functions involve logarithms of zero or negative numbers, which are not defined in the real number system.

Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]