Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the [tex]\( y \)[/tex]-intercept of a logarithmic function, we need to compute the value of the function when [tex]\( x = 0 \)[/tex]. Let's evaluate each option one by one.
### Option A: [tex]\( f(x) = \log(x + 1) - 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 + 1) - 1 = \log(1) - 1 \][/tex]
Since [tex]\( \log(1) = 0 \)[/tex]:
[tex]\[ f(0) = 0 - 1 = -1 \][/tex]
Thus, this function has a [tex]\( y \)[/tex]-intercept at [tex]\( (0, -1) \)[/tex].
### Option B: [tex]\( f(x) = \log x + 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0) + 1 \][/tex]
The logarithm of zero, [tex]\( \log(0) \)[/tex], is undefined because the logarithm function is only defined for positive real numbers. Hence, this function does not have a [tex]\( y \)[/tex]-intercept.
### Option C: [tex]\( f(x) = \log(x - 1) + 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 - 1) + 1 = \log(-1) + 1 \][/tex]
The logarithm of a negative number, [tex]\( \log(-1) \)[/tex], is also undefined for real numbers. Therefore, this function does not have a [tex]\( y \)[/tex]-intercept.
### Option D: [tex]\( f(x) = \log(x - 1) - 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 - 1) - 1 = \log(-1) - 1 \][/tex]
The logarithm of a negative number, [tex]\( \log(-1) \)[/tex], is undefined for real numbers. Thus, this function does not have a [tex]\( y \)[/tex]-intercept.
### Conclusion
After evaluating each option, we see that only option A, [tex]\( f(x) = \log(x + 1) - 1 \)[/tex], has a [tex]\( y \)[/tex]-intercept. The other functions involve logarithms of zero or negative numbers, which are not defined in the real number system.
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
### Option A: [tex]\( f(x) = \log(x + 1) - 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 + 1) - 1 = \log(1) - 1 \][/tex]
Since [tex]\( \log(1) = 0 \)[/tex]:
[tex]\[ f(0) = 0 - 1 = -1 \][/tex]
Thus, this function has a [tex]\( y \)[/tex]-intercept at [tex]\( (0, -1) \)[/tex].
### Option B: [tex]\( f(x) = \log x + 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0) + 1 \][/tex]
The logarithm of zero, [tex]\( \log(0) \)[/tex], is undefined because the logarithm function is only defined for positive real numbers. Hence, this function does not have a [tex]\( y \)[/tex]-intercept.
### Option C: [tex]\( f(x) = \log(x - 1) + 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 - 1) + 1 = \log(-1) + 1 \][/tex]
The logarithm of a negative number, [tex]\( \log(-1) \)[/tex], is also undefined for real numbers. Therefore, this function does not have a [tex]\( y \)[/tex]-intercept.
### Option D: [tex]\( f(x) = \log(x - 1) - 1 \)[/tex]
Evaluate at [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \log(0 - 1) - 1 = \log(-1) - 1 \][/tex]
The logarithm of a negative number, [tex]\( \log(-1) \)[/tex], is undefined for real numbers. Thus, this function does not have a [tex]\( y \)[/tex]-intercept.
### Conclusion
After evaluating each option, we see that only option A, [tex]\( f(x) = \log(x + 1) - 1 \)[/tex], has a [tex]\( y \)[/tex]-intercept. The other functions involve logarithms of zero or negative numbers, which are not defined in the real number system.
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.