Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which function is increasing and has a domain of [tex]\((1, \infty)\)[/tex], we need to analyze the properties of each of the given functions.
Step 1: Determine the domain of each function
1. [tex]\( f(x) = \log (x-1) + 2 \)[/tex]
- The expression [tex]\(\log(x-1)\)[/tex] is defined when [tex]\(x-1 > 0\)[/tex], thus [tex]\(x > 1\)[/tex].
- Therefore, the domain is [tex]\((1, \infty)\)[/tex].
2. [tex]\( f(x) = -\log (x-1) + 2 \)[/tex]
- Similar to the first function, [tex]\(\log(x-1)\)[/tex] is defined when [tex]\(x-1 > 0\)[/tex], thus [tex]\(x > 1\)[/tex].
- Therefore, the domain is [tex]\((1, \infty)\)[/tex].
3. [tex]\( f(x) = \log (x-2) + 1 \)[/tex]
- The expression [tex]\(\log(x-2)\)[/tex] is defined when [tex]\(x-2 > 0\)[/tex], thus [tex]\(x > 2\)[/tex].
- Therefore, the domain is [tex]\((2, \infty)\)[/tex].
4. [tex]\( f(x) = -\log (x-2) + 1 \)[/tex]
- Similar to the third function, [tex]\(\log(x-2)\)[/tex] is defined when [tex]\(x-2 > 0\)[/tex], thus [tex]\(x > 2\)[/tex].
- Therefore, the domain is [tex]\((2, \infty)\)[/tex].
Step 2: Determine which function is increasing
To see if a function is increasing, we can look at the derivative or the behavior of the function itself:
1. [tex]\( f(x) = \log (x-1) + 2 \)[/tex]
- The derivative:
[tex]\[ f'(x) = \frac{d}{dx} [\log (x-1) + 2] = \frac{1}{x-1} \][/tex]
- For [tex]\(x > 1\)[/tex], [tex]\(\frac{1}{x-1} > 0\)[/tex], meaning [tex]\( f(x) \)[/tex] is increasing on [tex]\((1, \infty)\)[/tex].
2. [tex]\( f(x) = -\log (x-1) + 2 \)[/tex]
- The derivative:
[tex]\[ f'(x) = \frac{d}{dx} [-\log (x-1) + 2] = -\frac{1}{x-1} \][/tex]
- For [tex]\(x > 1\)[/tex], [tex]\(-\frac{1}{x-1} < 0\)[/tex], meaning [tex]\( f(x) \)[/tex] is decreasing on [tex]\((1, \infty)\)[/tex].
3. [tex]\( f(x) = \log (x-2) + 1 \)[/tex]
- The domain of this function is [tex]\((2, \infty)\)[/tex], so it is not defined on [tex]\((1, \infty)\)[/tex].
4. [tex]\( f(x) = -\log (x-2) + 1 \)[/tex]
- The domain of this function is [tex]\((2, \infty)\)[/tex], so it is not defined on [tex]\((1, \infty)\)[/tex].
Conclusion:
The function [tex]\( f(x) = \log (x-1) + 2 \)[/tex] is the only function that is increasing on [tex]\((1, \infty)\)[/tex] and has a domain of [tex]\((1, \infty)\)[/tex].
Therefore, the correct answer is:
A. [tex]\( f(x) = \log (x-1) + 2 \)[/tex]
Step 1: Determine the domain of each function
1. [tex]\( f(x) = \log (x-1) + 2 \)[/tex]
- The expression [tex]\(\log(x-1)\)[/tex] is defined when [tex]\(x-1 > 0\)[/tex], thus [tex]\(x > 1\)[/tex].
- Therefore, the domain is [tex]\((1, \infty)\)[/tex].
2. [tex]\( f(x) = -\log (x-1) + 2 \)[/tex]
- Similar to the first function, [tex]\(\log(x-1)\)[/tex] is defined when [tex]\(x-1 > 0\)[/tex], thus [tex]\(x > 1\)[/tex].
- Therefore, the domain is [tex]\((1, \infty)\)[/tex].
3. [tex]\( f(x) = \log (x-2) + 1 \)[/tex]
- The expression [tex]\(\log(x-2)\)[/tex] is defined when [tex]\(x-2 > 0\)[/tex], thus [tex]\(x > 2\)[/tex].
- Therefore, the domain is [tex]\((2, \infty)\)[/tex].
4. [tex]\( f(x) = -\log (x-2) + 1 \)[/tex]
- Similar to the third function, [tex]\(\log(x-2)\)[/tex] is defined when [tex]\(x-2 > 0\)[/tex], thus [tex]\(x > 2\)[/tex].
- Therefore, the domain is [tex]\((2, \infty)\)[/tex].
Step 2: Determine which function is increasing
To see if a function is increasing, we can look at the derivative or the behavior of the function itself:
1. [tex]\( f(x) = \log (x-1) + 2 \)[/tex]
- The derivative:
[tex]\[ f'(x) = \frac{d}{dx} [\log (x-1) + 2] = \frac{1}{x-1} \][/tex]
- For [tex]\(x > 1\)[/tex], [tex]\(\frac{1}{x-1} > 0\)[/tex], meaning [tex]\( f(x) \)[/tex] is increasing on [tex]\((1, \infty)\)[/tex].
2. [tex]\( f(x) = -\log (x-1) + 2 \)[/tex]
- The derivative:
[tex]\[ f'(x) = \frac{d}{dx} [-\log (x-1) + 2] = -\frac{1}{x-1} \][/tex]
- For [tex]\(x > 1\)[/tex], [tex]\(-\frac{1}{x-1} < 0\)[/tex], meaning [tex]\( f(x) \)[/tex] is decreasing on [tex]\((1, \infty)\)[/tex].
3. [tex]\( f(x) = \log (x-2) + 1 \)[/tex]
- The domain of this function is [tex]\((2, \infty)\)[/tex], so it is not defined on [tex]\((1, \infty)\)[/tex].
4. [tex]\( f(x) = -\log (x-2) + 1 \)[/tex]
- The domain of this function is [tex]\((2, \infty)\)[/tex], so it is not defined on [tex]\((1, \infty)\)[/tex].
Conclusion:
The function [tex]\( f(x) = \log (x-1) + 2 \)[/tex] is the only function that is increasing on [tex]\((1, \infty)\)[/tex] and has a domain of [tex]\((1, \infty)\)[/tex].
Therefore, the correct answer is:
A. [tex]\( f(x) = \log (x-1) + 2 \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.