Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether the equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex] represents a relation, a function, both a relation and a function, or neither, we should understand the definitions and properties of these terms.
1. Relation: A relation is any set of ordered pairs [tex]\((x, y)\)[/tex]. Essentially, any equation that describes how [tex]\( y \)[/tex] depends on [tex]\( x \)[/tex] is a relation because it pairs each [tex]\( x \)[/tex] with one or more [tex]\( y \)[/tex] values. The given equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex] clearly shows how [tex]\( y \)[/tex] is related to [tex]\( x \)[/tex], thus it is a relation.
2. Function: A function is a special kind of relation where each input [tex]\( x \)[/tex] corresponds to exactly one output [tex]\( y \)[/tex]. In other words, for each [tex]\( x \)[/tex] value, there is only one [tex]\( y \)[/tex] value. For the quadratic equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex], this requirement is satisfied because for any given [tex]\( x \)[/tex], there is one unique value for [tex]\( y \)[/tex]. Hence, this equation defines a function.
Given that the equation represents both a relation and adheres to the definition of a function:
### Conclusion:
The equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex] represents both a relation and a function.
The correct answer is:
B. both a relation and a function
1. Relation: A relation is any set of ordered pairs [tex]\((x, y)\)[/tex]. Essentially, any equation that describes how [tex]\( y \)[/tex] depends on [tex]\( x \)[/tex] is a relation because it pairs each [tex]\( x \)[/tex] with one or more [tex]\( y \)[/tex] values. The given equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex] clearly shows how [tex]\( y \)[/tex] is related to [tex]\( x \)[/tex], thus it is a relation.
2. Function: A function is a special kind of relation where each input [tex]\( x \)[/tex] corresponds to exactly one output [tex]\( y \)[/tex]. In other words, for each [tex]\( x \)[/tex] value, there is only one [tex]\( y \)[/tex] value. For the quadratic equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex], this requirement is satisfied because for any given [tex]\( x \)[/tex], there is one unique value for [tex]\( y \)[/tex]. Hence, this equation defines a function.
Given that the equation represents both a relation and adheres to the definition of a function:
### Conclusion:
The equation [tex]\( y = 3x^2 - 9x + 20 \)[/tex] represents both a relation and a function.
The correct answer is:
B. both a relation and a function
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.