At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve for [tex]\(\sin(\theta)\)[/tex] given that [tex]\(\cos(\theta) = -\frac{2\sqrt{5}}{5}\)[/tex] and [tex]\(\theta\)[/tex] is in quadrant II.
Since [tex]\(\theta\)[/tex] is in quadrant II, we know that the cosine value is negative and the sine value is positive.
We can use the Pythagorean identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
First, plug in the given value of [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = \left(-\frac{2\sqrt{5}}{5}\right)^2 \][/tex]
Calculate [tex]\(\cos^2(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = \left(-\frac{2\sqrt{5}}{5}\right)^2 = \left(\frac{2\sqrt{5}}{5}\right)^2 = \frac{4 \times 5}{25} = \frac{20}{25} = \frac{4}{5} \][/tex]
Now, use the Pythagorean identity to find [tex]\(\sin^2(\theta)\)[/tex]:
[tex]\[ \sin^2(\theta) = 1 - \cos^2(\theta) \][/tex]
[tex]\[ \sin^2(\theta) = 1 - \frac{4}{5} = \frac{5}{5} - \frac{4}{5} = \frac{1}{5} \][/tex]
We need [tex]\(\sin(\theta)\)[/tex], so take the square root of both sides:
[tex]\[ \sin(\theta) = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5} \][/tex]
Since [tex]\(\theta\)[/tex] is in quadrant II where the sine value is positive, we get:
[tex]\[ \sin(\theta) = \frac{\sqrt{5}}{5} \][/tex]
Thus, the correct answer is:
B. [tex]\(\frac{\sqrt{5}}{5}\)[/tex]
Since [tex]\(\theta\)[/tex] is in quadrant II, we know that the cosine value is negative and the sine value is positive.
We can use the Pythagorean identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
First, plug in the given value of [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = \left(-\frac{2\sqrt{5}}{5}\right)^2 \][/tex]
Calculate [tex]\(\cos^2(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = \left(-\frac{2\sqrt{5}}{5}\right)^2 = \left(\frac{2\sqrt{5}}{5}\right)^2 = \frac{4 \times 5}{25} = \frac{20}{25} = \frac{4}{5} \][/tex]
Now, use the Pythagorean identity to find [tex]\(\sin^2(\theta)\)[/tex]:
[tex]\[ \sin^2(\theta) = 1 - \cos^2(\theta) \][/tex]
[tex]\[ \sin^2(\theta) = 1 - \frac{4}{5} = \frac{5}{5} - \frac{4}{5} = \frac{1}{5} \][/tex]
We need [tex]\(\sin(\theta)\)[/tex], so take the square root of both sides:
[tex]\[ \sin(\theta) = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5} \][/tex]
Since [tex]\(\theta\)[/tex] is in quadrant II where the sine value is positive, we get:
[tex]\[ \sin(\theta) = \frac{\sqrt{5}}{5} \][/tex]
Thus, the correct answer is:
B. [tex]\(\frac{\sqrt{5}}{5}\)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.