Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's solve for [tex]\(\sin(\theta)\)[/tex] given that [tex]\(\cos(\theta) = -\frac{2\sqrt{5}}{5}\)[/tex] and [tex]\(\theta\)[/tex] is in quadrant II.
Since [tex]\(\theta\)[/tex] is in quadrant II, we know that the cosine value is negative and the sine value is positive.
We can use the Pythagorean identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
First, plug in the given value of [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = \left(-\frac{2\sqrt{5}}{5}\right)^2 \][/tex]
Calculate [tex]\(\cos^2(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = \left(-\frac{2\sqrt{5}}{5}\right)^2 = \left(\frac{2\sqrt{5}}{5}\right)^2 = \frac{4 \times 5}{25} = \frac{20}{25} = \frac{4}{5} \][/tex]
Now, use the Pythagorean identity to find [tex]\(\sin^2(\theta)\)[/tex]:
[tex]\[ \sin^2(\theta) = 1 - \cos^2(\theta) \][/tex]
[tex]\[ \sin^2(\theta) = 1 - \frac{4}{5} = \frac{5}{5} - \frac{4}{5} = \frac{1}{5} \][/tex]
We need [tex]\(\sin(\theta)\)[/tex], so take the square root of both sides:
[tex]\[ \sin(\theta) = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5} \][/tex]
Since [tex]\(\theta\)[/tex] is in quadrant II where the sine value is positive, we get:
[tex]\[ \sin(\theta) = \frac{\sqrt{5}}{5} \][/tex]
Thus, the correct answer is:
B. [tex]\(\frac{\sqrt{5}}{5}\)[/tex]
Since [tex]\(\theta\)[/tex] is in quadrant II, we know that the cosine value is negative and the sine value is positive.
We can use the Pythagorean identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
First, plug in the given value of [tex]\(\cos(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = \left(-\frac{2\sqrt{5}}{5}\right)^2 \][/tex]
Calculate [tex]\(\cos^2(\theta)\)[/tex]:
[tex]\[ \cos^2(\theta) = \left(-\frac{2\sqrt{5}}{5}\right)^2 = \left(\frac{2\sqrt{5}}{5}\right)^2 = \frac{4 \times 5}{25} = \frac{20}{25} = \frac{4}{5} \][/tex]
Now, use the Pythagorean identity to find [tex]\(\sin^2(\theta)\)[/tex]:
[tex]\[ \sin^2(\theta) = 1 - \cos^2(\theta) \][/tex]
[tex]\[ \sin^2(\theta) = 1 - \frac{4}{5} = \frac{5}{5} - \frac{4}{5} = \frac{1}{5} \][/tex]
We need [tex]\(\sin(\theta)\)[/tex], so take the square root of both sides:
[tex]\[ \sin(\theta) = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5} \][/tex]
Since [tex]\(\theta\)[/tex] is in quadrant II where the sine value is positive, we get:
[tex]\[ \sin(\theta) = \frac{\sqrt{5}}{5} \][/tex]
Thus, the correct answer is:
B. [tex]\(\frac{\sqrt{5}}{5}\)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.