Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's complete the missing reasons for the given proof step-by-step, ensuring we thoroughly understand each mathematical property applied.
Given equation: [tex]\( 4(x-2) = 6x + 18 \)[/tex]
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Statements} & \text{Reasons} \\ \hline 1. \; 4(x-2) = 6x + 18 & \text{given} \\ \hline 2. \; 4x - 8 = 6x + 18 & \text{distributive property} \\ \hline 3. \; -2x - 8 = 18 & \text{subtraction property of equality} \\ \hline 4. \; -2x = 26 & \text{addition property of equality} \\ \hline 5. \; x = -13 & \text{division property of equality} \\ \hline \end{tabular} \][/tex]
### Detailed Reasoning:
1. Given Equation:
- Statement 1: [tex]\(4(x - 2) = 6x + 18\)[/tex]
- Reason: This is the given equation.
2. Distributive Property:
- Statement 2: [tex]\(4(x - 2) = 6x + 18\)[/tex] simplifies to [tex]\(4x - 8 = 6x + 18\)[/tex].
- Reason: By applying the distributive property [tex]\(a(b + c) = ab + ac\)[/tex], we get [tex]\(4 \cdot x - 4 \cdot 2\)[/tex], which simplifies to [tex]\(4x - 8\)[/tex].
3. Subtraction Property of Equality:
- Statement 3: [tex]\(4x - 8 = 6x + 18\)[/tex] becomes [tex]\(-2x - 8 = 18\)[/tex].
- Reason: Subtract [tex]\(6x\)[/tex] from both sides to isolate the variable term on one side: [tex]\(4x - 8 - 6x = 6x + 18 - 6x\)[/tex], which simplifies to [tex]\(-2x - 8 = 18\)[/tex].
4. Addition Property of Equality:
- Statement 4: [tex]\(-2x - 8 = 18\)[/tex] simplifies to [tex]\(-2x = 26\)[/tex].
- Reason: Add 8 to both sides to isolate the term with the variable: [tex]\(-2x - 8 + 8 = 18 + 8\)[/tex], which simplifies to [tex]\(-2x = 26\)[/tex].
5. Division Property of Equality:
- Statement 5: [tex]\(-2x = 26\)[/tex] simplifies to [tex]\(x = -13\)[/tex].
- Reason: Divide both sides by -2 to solve for [tex]\(x\)[/tex]: [tex]\(\frac{-2x}{-2} = \frac{26}{-2}\)[/tex], which simplifies to [tex]\(x = -13\)[/tex].
Thus, the completed table with the correct reasons is:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Statements} & \text{Reasons} \\ \hline 1. \; 4(x-2) = 6x + 18 & \text{given} \\ \hline 2. \; 4x - 8 = 6x + 18 & \text{distributive property} \\ \hline 3. \; -2x - 8 = 18 & \text{subtraction property of equality} \\ \hline 4. \; -2x = 26 & \text{addition property of equality} \\ \hline 5. \; x = -13 & \text{division property of equality} \\ \hline \end{tabular} \][/tex]
The missing reasons are:
- Step 3: Subtraction property of equality
- Step 5: Division property of equality
Hence, the correct answer is:
3. subtraction property of equality; 5. division property of equality.
Given equation: [tex]\( 4(x-2) = 6x + 18 \)[/tex]
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Statements} & \text{Reasons} \\ \hline 1. \; 4(x-2) = 6x + 18 & \text{given} \\ \hline 2. \; 4x - 8 = 6x + 18 & \text{distributive property} \\ \hline 3. \; -2x - 8 = 18 & \text{subtraction property of equality} \\ \hline 4. \; -2x = 26 & \text{addition property of equality} \\ \hline 5. \; x = -13 & \text{division property of equality} \\ \hline \end{tabular} \][/tex]
### Detailed Reasoning:
1. Given Equation:
- Statement 1: [tex]\(4(x - 2) = 6x + 18\)[/tex]
- Reason: This is the given equation.
2. Distributive Property:
- Statement 2: [tex]\(4(x - 2) = 6x + 18\)[/tex] simplifies to [tex]\(4x - 8 = 6x + 18\)[/tex].
- Reason: By applying the distributive property [tex]\(a(b + c) = ab + ac\)[/tex], we get [tex]\(4 \cdot x - 4 \cdot 2\)[/tex], which simplifies to [tex]\(4x - 8\)[/tex].
3. Subtraction Property of Equality:
- Statement 3: [tex]\(4x - 8 = 6x + 18\)[/tex] becomes [tex]\(-2x - 8 = 18\)[/tex].
- Reason: Subtract [tex]\(6x\)[/tex] from both sides to isolate the variable term on one side: [tex]\(4x - 8 - 6x = 6x + 18 - 6x\)[/tex], which simplifies to [tex]\(-2x - 8 = 18\)[/tex].
4. Addition Property of Equality:
- Statement 4: [tex]\(-2x - 8 = 18\)[/tex] simplifies to [tex]\(-2x = 26\)[/tex].
- Reason: Add 8 to both sides to isolate the term with the variable: [tex]\(-2x - 8 + 8 = 18 + 8\)[/tex], which simplifies to [tex]\(-2x = 26\)[/tex].
5. Division Property of Equality:
- Statement 5: [tex]\(-2x = 26\)[/tex] simplifies to [tex]\(x = -13\)[/tex].
- Reason: Divide both sides by -2 to solve for [tex]\(x\)[/tex]: [tex]\(\frac{-2x}{-2} = \frac{26}{-2}\)[/tex], which simplifies to [tex]\(x = -13\)[/tex].
Thus, the completed table with the correct reasons is:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Statements} & \text{Reasons} \\ \hline 1. \; 4(x-2) = 6x + 18 & \text{given} \\ \hline 2. \; 4x - 8 = 6x + 18 & \text{distributive property} \\ \hline 3. \; -2x - 8 = 18 & \text{subtraction property of equality} \\ \hline 4. \; -2x = 26 & \text{addition property of equality} \\ \hline 5. \; x = -13 & \text{division property of equality} \\ \hline \end{tabular} \][/tex]
The missing reasons are:
- Step 3: Subtraction property of equality
- Step 5: Division property of equality
Hence, the correct answer is:
3. subtraction property of equality; 5. division property of equality.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.