Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Calculate [tex]\(\tan \left(\sin^{-1} \frac{1}{3}\right)\)[/tex]:

A. [tex]\(\frac{\sqrt{2}}{4}\)[/tex]
B. [tex]\(\frac{\sqrt{2}}{2}\)[/tex]
C. [tex]\(2\sqrt{2}\)[/tex]
D. [tex]\(\frac{1}{2}\)[/tex]


Sagot :

To solve the expression [tex]\(\tan \left( \sin^{-1} \frac{1}{3} \right)\)[/tex], we can follow these steps:

1. Identify the angle [tex]\(\theta\)[/tex]:
Let's denote the angle by [tex]\(\theta\)[/tex] such that [tex]\(\theta = \sin^{-1}\left( \frac{1}{3} \right)\)[/tex].
This means that [tex]\(\sin \theta = \frac{1}{3}\)[/tex].

2. Find [tex]\(\theta\)[/tex]:
The angle [tex]\(\theta\)[/tex] whose sine value is [tex]\(\frac{1}{3}\)[/tex] is approximately [tex]\(0.3398369094541219\)[/tex] radians.

3. Calculate [tex]\(\tan \theta\)[/tex]:
Use the values of trigonometric functions for the angle [tex]\(\theta\)[/tex].

The tangent of [tex]\(\theta\)[/tex] can be found:
[tex]\[ \tan \theta \approx 0.35355339059327373 \][/tex]

Next, we look at the provided choices to see which one matches the value [tex]\(0.35355339059327373\)[/tex]:

- A: [tex]\(\frac{\sqrt{2}}{4} \approx 0.3535533905932738\)[/tex]

The correct answer is [tex]\(A\)[/tex] [tex]\(\frac{\sqrt{2}}{4}\)[/tex], as it matches the calculated value of the tangent of the given angle.

Thus, the solution is:
[tex]\[ \tan \left( \sin^{-1} \frac{1}{3} \right) = \frac{\sqrt{2}}{4} \][/tex]
So, the correct answer is option [tex]\(A\)[/tex].