Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the gravitational force between two objects, you can use Newton's law of universal gravitation. The formula is:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (in kilograms),
- [tex]\( r \)[/tex] is the distance between the centers of the two objects (in meters).
Given:
- The mass of each bowling ball, [tex]\( m_1 = m_2 = 8 \, \text{kg} \)[/tex],
- The distance between the two bowling balls, [tex]\( r = 2 \, \text{m} \)[/tex].
Now plug these values into the formula:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot \left(\text{m}^2 / \text{kg}^2\right) \right) \frac{8 \, \text{kg} \times 8 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
First, calculate [tex]\( (2 \, \text{m})^2 \)[/tex]:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Next, calculate [tex]\( 8 \, \text{kg} \times 8 \, \text{kg} \)[/tex]:
[tex]\[ 8 \, \text{kg} \times 8 \, \text{kg} = 64 \, \text{kg}^2 \][/tex]
Now the formula looks like this:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \right) \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Divide [tex]\( 64 \, \text{kg}^2 \)[/tex] by [tex]\( 4 \, \text{m}^2 \)[/tex]:
[tex]\[ \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} = 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
Now multiply:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \times 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \][/tex]
Calculate [tex]\( 6.67 \times 16 \)[/tex]:
[tex]\[ 6.67 \times 16 = 106.72 \][/tex]
Now add the exponent:
[tex]\[ 106.72 \times 10^{-11} = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
So, the gravitational force between the two bowling balls is:
[tex]\[ F = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
Referring to the given options:
- A. [tex]\( 2.14 \times 10^{-9} \, \text{N} \)[/tex]
- B. [tex]\( 3.21 \times 10^{-8} \, \text{N} \)[/tex]
- C. [tex]\( 2.68 \times 10^{-10} \, \text{N} \)[/tex]
- D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
The closest and correct answer is:
D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two objects,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \)[/tex],
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (in kilograms),
- [tex]\( r \)[/tex] is the distance between the centers of the two objects (in meters).
Given:
- The mass of each bowling ball, [tex]\( m_1 = m_2 = 8 \, \text{kg} \)[/tex],
- The distance between the two bowling balls, [tex]\( r = 2 \, \text{m} \)[/tex].
Now plug these values into the formula:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot \left(\text{m}^2 / \text{kg}^2\right) \right) \frac{8 \, \text{kg} \times 8 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
First, calculate [tex]\( (2 \, \text{m})^2 \)[/tex]:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Next, calculate [tex]\( 8 \, \text{kg} \times 8 \, \text{kg} \)[/tex]:
[tex]\[ 8 \, \text{kg} \times 8 \, \text{kg} = 64 \, \text{kg}^2 \][/tex]
Now the formula looks like this:
[tex]\[ F = \left( 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \right) \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Divide [tex]\( 64 \, \text{kg}^2 \)[/tex] by [tex]\( 4 \, \text{m}^2 \)[/tex]:
[tex]\[ \frac{64 \, \text{kg}^2}{4 \, \text{m}^2} = 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
Now multiply:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot (\text{m}^2 / \text{kg}^2) \times 16 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 10^{-11} \times 16 \][/tex]
Calculate [tex]\( 6.67 \times 16 \)[/tex]:
[tex]\[ 6.67 \times 16 = 106.72 \][/tex]
Now add the exponent:
[tex]\[ 106.72 \times 10^{-11} = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
So, the gravitational force between the two bowling balls is:
[tex]\[ F = 1.0672 \times 10^{-9} \, \text{N} \][/tex]
Referring to the given options:
- A. [tex]\( 2.14 \times 10^{-9} \, \text{N} \)[/tex]
- B. [tex]\( 3.21 \times 10^{-8} \, \text{N} \)[/tex]
- C. [tex]\( 2.68 \times 10^{-10} \, \text{N} \)[/tex]
- D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
The closest and correct answer is:
D. [tex]\( 1.07 \times 10^{-9} \, \text{N} \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.