At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

You and a friend are playing a game by tossing two coins. If both coins land on heads, you win. If the coins land on different sides, your friend wins. The table shows the possible outcomes:

| Coin 1 | Coin 2 |
|--------|--------|
| Heads | Heads |
| Heads | Tails |
| Tails | Tails |
| Tails | Heads |

Is this a fair game?

A. Yes. You and your friend each have a [tex]\(\frac{1}{4}\)[/tex] probability of winning.


Sagot :

To determine if this game is fair, we need to look at the probabilities of each player winning based on the outcomes of tossing two coins.

Let's go through the possible outcomes and their probabilities step-by-step:

1. Possible Outcomes:
- Heads & Heads
- Heads & Tails
- Tails & Tails
- Tails & Heads

Each coin has 2 sides, and there are two coins. Thus, we have a total of [tex]\(2 \times 2 = 4\)[/tex] possible outcomes. The probability of each individual outcome (Heads & Heads, Heads & Tails, etc.) is [tex]\(\frac{1}{4}\)[/tex] because each outcome is equally likely.

2. Winning Conditions:
- You win if both coins land on heads.
- Your friend wins if the coins land on different sides (one heads and one tails).

Now, let's determine the probability for each winning condition:

- Your win condition: Both coins land on heads.
- Probability of Heads & Heads is [tex]\(\frac{1}{4}\)[/tex].

- Friend's win condition: One coin shows heads, and the other shows tails.
- Probability of Heads & Tails: [tex]\(\frac{1}{4}\)[/tex].
- Probability of Tails & Heads: [tex]\(\frac{1}{4}\)[/tex].

Adding these two probabilities together:
[tex]\[ \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \][/tex]
This means your friend has a [tex]\(\frac{1}{2}\)[/tex] probability of winning.

3. Other outcome:
- Both coins land on tails.
- Probability of Tails & Tails is [tex]\(\frac{1}{4}\)[/tex].

4. Game Fairness Determination:
For the game to be fair, the probabilities of you winning and your friend winning should be equal.

- Probability that you win: [tex]\(\frac{1}{4}\)[/tex] (since both coins show heads)
- Probability that your friend wins: [tex]\(\frac{1}{2}\)[/tex] (since one coin shows heads, and the other shows tails)

Since [tex]\(\frac{1}{4} \neq \frac{1}{2}\)[/tex], the probabilities are not equal. Thus, the game is not fair.

### Conclusion:
The game is not fair. The probability of you winning is [tex]\(\frac{1}{4}\)[/tex], whereas the probability of your friend winning is [tex]\(\frac{1}{2}\)[/tex]. Hence, option A is incorrect because it suggests that both you and your friend have the same probability of winning, which is not the case.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.