Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which matrix results from the given operation [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] on the original augmented matrix, we need to carefully apply the operation to the second row of the initial matrix.
Here is the original matrix:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ 1 & 3 & -1 & -9 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
The operation [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] indicates that each element in the second row should be multiplied by [tex]\(-3\)[/tex].
Let's perform this operation on the second row step by step:
- For the first element of the second row: [tex]\(1 \times -3 = -3\)[/tex]
- For the second element of the second row: [tex]\(3 \times -3 = -9\)[/tex]
- For the third element of the second row: [tex]\(-1 \times -3 = 3\)[/tex]
- For the fourth element of the second row (the augmented part): [tex]\(-9 \times -3 = 27\)[/tex]
So the new second row after applying [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] will be:
[tex]\[ [-3, -9, 3, 27] \][/tex]
Thus, the resulting matrix will be:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
Therefore, the correct matrix resulting from the operation [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
This corresponds to the first given option:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
Here is the original matrix:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ 1 & 3 & -1 & -9 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
The operation [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] indicates that each element in the second row should be multiplied by [tex]\(-3\)[/tex].
Let's perform this operation on the second row step by step:
- For the first element of the second row: [tex]\(1 \times -3 = -3\)[/tex]
- For the second element of the second row: [tex]\(3 \times -3 = -9\)[/tex]
- For the third element of the second row: [tex]\(-1 \times -3 = 3\)[/tex]
- For the fourth element of the second row (the augmented part): [tex]\(-9 \times -3 = 27\)[/tex]
So the new second row after applying [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] will be:
[tex]\[ [-3, -9, 3, 27] \][/tex]
Thus, the resulting matrix will be:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
Therefore, the correct matrix resulting from the operation [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
This corresponds to the first given option:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.