At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation [tex]\( 9^{x-1} - 2 = 25 \)[/tex], follow these steps:
1. Start with the given equation:
[tex]\[ 9^{x-1} - 2 = 25 \][/tex]
2. Isolate the term involving the exponent by adding 2 to both sides of the equation:
[tex]\[ 9^{x-1} = 27 \][/tex]
3. Recognize that 27 can be written as a power of 3. Recall that [tex]\( 9 = 3^2 \)[/tex] and [tex]\( 27 = 3^3 \)[/tex]. Rewrite the equation using these bases:
[tex]\[ (3^2)^{x-1} = 3^3 \][/tex]
4. Simplify the left-hand side using the properties of exponents [tex]\((a^m)^n = a^{mn}\)[/tex]:
[tex]\[ 3^{2(x-1)} = 3^3 \][/tex]
5. Since the bases are the same, set the exponents equal to each other:
[tex]\[ 2(x-1) = 3 \][/tex]
6. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2x - 2 = 3 \][/tex]
7. Add 2 to both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 2x = 5 \][/tex]
8. Divide both sides by 2:
[tex]\[ x = \frac{5}{2} \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\( 9^{x-1} - 2 = 25 \)[/tex] is:
[tex]\[ x = \frac{5}{2} \][/tex]
Given the options:
- [tex]\( x = \frac{1}{2} \)[/tex]
- [tex]\( x = 2 \)[/tex]
- [tex]\( x = \frac{5}{2} \)[/tex]
- [tex]\( x = 4 \)[/tex]
The correct answer is:
[tex]\[ x = \frac{5}{2} \][/tex]
This corresponds to the third option.
1. Start with the given equation:
[tex]\[ 9^{x-1} - 2 = 25 \][/tex]
2. Isolate the term involving the exponent by adding 2 to both sides of the equation:
[tex]\[ 9^{x-1} = 27 \][/tex]
3. Recognize that 27 can be written as a power of 3. Recall that [tex]\( 9 = 3^2 \)[/tex] and [tex]\( 27 = 3^3 \)[/tex]. Rewrite the equation using these bases:
[tex]\[ (3^2)^{x-1} = 3^3 \][/tex]
4. Simplify the left-hand side using the properties of exponents [tex]\((a^m)^n = a^{mn}\)[/tex]:
[tex]\[ 3^{2(x-1)} = 3^3 \][/tex]
5. Since the bases are the same, set the exponents equal to each other:
[tex]\[ 2(x-1) = 3 \][/tex]
6. Solve for [tex]\( x \)[/tex]:
[tex]\[ 2x - 2 = 3 \][/tex]
7. Add 2 to both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 2x = 5 \][/tex]
8. Divide both sides by 2:
[tex]\[ x = \frac{5}{2} \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\( 9^{x-1} - 2 = 25 \)[/tex] is:
[tex]\[ x = \frac{5}{2} \][/tex]
Given the options:
- [tex]\( x = \frac{1}{2} \)[/tex]
- [tex]\( x = 2 \)[/tex]
- [tex]\( x = \frac{5}{2} \)[/tex]
- [tex]\( x = 4 \)[/tex]
The correct answer is:
[tex]\[ x = \frac{5}{2} \][/tex]
This corresponds to the third option.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.