Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which combination results in [tex]\(d\)[/tex]-bond formation when the internuclear axis is along the [tex]\(x\)[/tex]-axis, let's analyze the interactions between the orbitals provided in the columns.
Firstly, let's get a grasp on the notation and the possible overlaps:
1. (P) [tex]\(d_{yz}\)[/tex]:
- This is a [tex]\(d\)[/tex]-orbital with lobes lying in the [tex]\(yz\)[/tex]-plane.
2. (Q) [tex]\(s\)[/tex]-orbital:
- This is a spherical orbital.
3. (R) [tex]\(d_{xz}\)[/tex]:
- This is a [tex]\(d\)[/tex]-orbital with lobes lying in the [tex]\(xz\)[/tex]-plane.
4. (S) [tex]\(p_z\)[/tex]:
- This is a [tex]\(p\)[/tex]-orbital aligned along the [tex]\(z\)[/tex]-axis.
Now, looking at the options provided:
1. (P), (7), (i):
- [tex]\(d_{yz}\)[/tex] with an unidentified orbital (7) and a 1 lobe - 1 lobe overlap. The provided table does not include (7), so this is invalid.
2. (P), (3), (iii):
- [tex]\(d_{yz}\)[/tex], [tex]\(d_{yz}\)[/tex], and 4 lobe - 4 lobe overlap. However, for [tex]\(d_{yz}\)[/tex] on the [tex]\(x\)[/tex]-axis, the [tex]\(d_{yz}\)[/tex] orbitals would actually overlap in the [tex]\(yz\)[/tex]-plane.
3. (R), (3), (iv):
- [tex]\(d_{xz}\)[/tex], [tex]\(d_{yz}\)[/tex], and zero overlap. Given that [tex]\(d_{xz}\)[/tex] is aligned along the [tex]\(xz\)[/tex]-plane and [tex]\(d_{yz}\)[/tex] is aligned along the [tex]\(yz\)[/tex]-plane, their overlap along the [tex]\(x\)[/tex]-axis would indeed result in zero overlap.
4. (P), (2), (ii):
- [tex]\(d_{yz}\)[/tex], [tex]\(p_x\)[/tex], and 2 lobe - 2 lobe overlap. Here, [tex]\(d_{yz}\)[/tex] has lobes in the [tex]\(yz\)[/tex]-plane and [tex]\(p_x\)[/tex] has lobes along the [tex]\(x\)[/tex]-axis, leading to a 2 lobe - 2 lobe overlap along the [tex]\(x\)[/tex]-axis.
Therefore, when the internuclear axis is the [tex]\(x\)[/tex]-axis, the combination that results in a [tex]\(d\)[/tex]-bond formation by ensuring a 2 lobe - 2 lobe overlap is:
(P), (2), (ii).
Firstly, let's get a grasp on the notation and the possible overlaps:
1. (P) [tex]\(d_{yz}\)[/tex]:
- This is a [tex]\(d\)[/tex]-orbital with lobes lying in the [tex]\(yz\)[/tex]-plane.
2. (Q) [tex]\(s\)[/tex]-orbital:
- This is a spherical orbital.
3. (R) [tex]\(d_{xz}\)[/tex]:
- This is a [tex]\(d\)[/tex]-orbital with lobes lying in the [tex]\(xz\)[/tex]-plane.
4. (S) [tex]\(p_z\)[/tex]:
- This is a [tex]\(p\)[/tex]-orbital aligned along the [tex]\(z\)[/tex]-axis.
Now, looking at the options provided:
1. (P), (7), (i):
- [tex]\(d_{yz}\)[/tex] with an unidentified orbital (7) and a 1 lobe - 1 lobe overlap. The provided table does not include (7), so this is invalid.
2. (P), (3), (iii):
- [tex]\(d_{yz}\)[/tex], [tex]\(d_{yz}\)[/tex], and 4 lobe - 4 lobe overlap. However, for [tex]\(d_{yz}\)[/tex] on the [tex]\(x\)[/tex]-axis, the [tex]\(d_{yz}\)[/tex] orbitals would actually overlap in the [tex]\(yz\)[/tex]-plane.
3. (R), (3), (iv):
- [tex]\(d_{xz}\)[/tex], [tex]\(d_{yz}\)[/tex], and zero overlap. Given that [tex]\(d_{xz}\)[/tex] is aligned along the [tex]\(xz\)[/tex]-plane and [tex]\(d_{yz}\)[/tex] is aligned along the [tex]\(yz\)[/tex]-plane, their overlap along the [tex]\(x\)[/tex]-axis would indeed result in zero overlap.
4. (P), (2), (ii):
- [tex]\(d_{yz}\)[/tex], [tex]\(p_x\)[/tex], and 2 lobe - 2 lobe overlap. Here, [tex]\(d_{yz}\)[/tex] has lobes in the [tex]\(yz\)[/tex]-plane and [tex]\(p_x\)[/tex] has lobes along the [tex]\(x\)[/tex]-axis, leading to a 2 lobe - 2 lobe overlap along the [tex]\(x\)[/tex]-axis.
Therefore, when the internuclear axis is the [tex]\(x\)[/tex]-axis, the combination that results in a [tex]\(d\)[/tex]-bond formation by ensuring a 2 lobe - 2 lobe overlap is:
(P), (2), (ii).
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.