Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which combination results in [tex]\(d\)[/tex]-bond formation when the internuclear axis is along the [tex]\(x\)[/tex]-axis, let's analyze the interactions between the orbitals provided in the columns.
Firstly, let's get a grasp on the notation and the possible overlaps:
1. (P) [tex]\(d_{yz}\)[/tex]:
- This is a [tex]\(d\)[/tex]-orbital with lobes lying in the [tex]\(yz\)[/tex]-plane.
2. (Q) [tex]\(s\)[/tex]-orbital:
- This is a spherical orbital.
3. (R) [tex]\(d_{xz}\)[/tex]:
- This is a [tex]\(d\)[/tex]-orbital with lobes lying in the [tex]\(xz\)[/tex]-plane.
4. (S) [tex]\(p_z\)[/tex]:
- This is a [tex]\(p\)[/tex]-orbital aligned along the [tex]\(z\)[/tex]-axis.
Now, looking at the options provided:
1. (P), (7), (i):
- [tex]\(d_{yz}\)[/tex] with an unidentified orbital (7) and a 1 lobe - 1 lobe overlap. The provided table does not include (7), so this is invalid.
2. (P), (3), (iii):
- [tex]\(d_{yz}\)[/tex], [tex]\(d_{yz}\)[/tex], and 4 lobe - 4 lobe overlap. However, for [tex]\(d_{yz}\)[/tex] on the [tex]\(x\)[/tex]-axis, the [tex]\(d_{yz}\)[/tex] orbitals would actually overlap in the [tex]\(yz\)[/tex]-plane.
3. (R), (3), (iv):
- [tex]\(d_{xz}\)[/tex], [tex]\(d_{yz}\)[/tex], and zero overlap. Given that [tex]\(d_{xz}\)[/tex] is aligned along the [tex]\(xz\)[/tex]-plane and [tex]\(d_{yz}\)[/tex] is aligned along the [tex]\(yz\)[/tex]-plane, their overlap along the [tex]\(x\)[/tex]-axis would indeed result in zero overlap.
4. (P), (2), (ii):
- [tex]\(d_{yz}\)[/tex], [tex]\(p_x\)[/tex], and 2 lobe - 2 lobe overlap. Here, [tex]\(d_{yz}\)[/tex] has lobes in the [tex]\(yz\)[/tex]-plane and [tex]\(p_x\)[/tex] has lobes along the [tex]\(x\)[/tex]-axis, leading to a 2 lobe - 2 lobe overlap along the [tex]\(x\)[/tex]-axis.
Therefore, when the internuclear axis is the [tex]\(x\)[/tex]-axis, the combination that results in a [tex]\(d\)[/tex]-bond formation by ensuring a 2 lobe - 2 lobe overlap is:
(P), (2), (ii).
Firstly, let's get a grasp on the notation and the possible overlaps:
1. (P) [tex]\(d_{yz}\)[/tex]:
- This is a [tex]\(d\)[/tex]-orbital with lobes lying in the [tex]\(yz\)[/tex]-plane.
2. (Q) [tex]\(s\)[/tex]-orbital:
- This is a spherical orbital.
3. (R) [tex]\(d_{xz}\)[/tex]:
- This is a [tex]\(d\)[/tex]-orbital with lobes lying in the [tex]\(xz\)[/tex]-plane.
4. (S) [tex]\(p_z\)[/tex]:
- This is a [tex]\(p\)[/tex]-orbital aligned along the [tex]\(z\)[/tex]-axis.
Now, looking at the options provided:
1. (P), (7), (i):
- [tex]\(d_{yz}\)[/tex] with an unidentified orbital (7) and a 1 lobe - 1 lobe overlap. The provided table does not include (7), so this is invalid.
2. (P), (3), (iii):
- [tex]\(d_{yz}\)[/tex], [tex]\(d_{yz}\)[/tex], and 4 lobe - 4 lobe overlap. However, for [tex]\(d_{yz}\)[/tex] on the [tex]\(x\)[/tex]-axis, the [tex]\(d_{yz}\)[/tex] orbitals would actually overlap in the [tex]\(yz\)[/tex]-plane.
3. (R), (3), (iv):
- [tex]\(d_{xz}\)[/tex], [tex]\(d_{yz}\)[/tex], and zero overlap. Given that [tex]\(d_{xz}\)[/tex] is aligned along the [tex]\(xz\)[/tex]-plane and [tex]\(d_{yz}\)[/tex] is aligned along the [tex]\(yz\)[/tex]-plane, their overlap along the [tex]\(x\)[/tex]-axis would indeed result in zero overlap.
4. (P), (2), (ii):
- [tex]\(d_{yz}\)[/tex], [tex]\(p_x\)[/tex], and 2 lobe - 2 lobe overlap. Here, [tex]\(d_{yz}\)[/tex] has lobes in the [tex]\(yz\)[/tex]-plane and [tex]\(p_x\)[/tex] has lobes along the [tex]\(x\)[/tex]-axis, leading to a 2 lobe - 2 lobe overlap along the [tex]\(x\)[/tex]-axis.
Therefore, when the internuclear axis is the [tex]\(x\)[/tex]-axis, the combination that results in a [tex]\(d\)[/tex]-bond formation by ensuring a 2 lobe - 2 lobe overlap is:
(P), (2), (ii).
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.