Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve this step-by-step:
1. Determine the work rates:
- Ram's work rate: Ram alone can complete the work in 20 days. Hence, in one day, Ram can complete [tex]\(\frac{1}{20}\)[/tex] of the work.
- Shyam's work rate: Shyam alone can complete the work in 30 days. Hence, in one day, Shyam can complete [tex]\(\frac{1}{30}\)[/tex] of the work.
2. Combine the work rates:
- When working together, their combined work rate per day is the sum of their individual rates.
- Combined work rate = [tex]\(\frac{1}{20} + \frac{1}{30}\)[/tex].
3. Find a common denominator to add the fractions:
- The least common multiple (LCM) of 20 and 30 is 60.
- [tex]\(\frac{1}{20}\)[/tex] can be converted to [tex]\(\frac{3}{60}\)[/tex] (since [tex]\(20 \times 3 = 60\)[/tex]).
- [tex]\(\frac{1}{30}\)[/tex] can be converted to [tex]\(\frac{2}{60}\)[/tex] (since [tex]\(30 \times 2 = 60\)[/tex]).
- Hence, [tex]\(\frac{1}{20} + \frac{1}{30} = \frac{3}{60} + \frac{2}{60} = \frac{5}{60} = \frac{1}{12}\)[/tex].
4. Calculate the work done in 6 days:
- If Ram and Shyam work together, they can complete [tex]\(\frac{1}{12}\)[/tex] of the work in one day.
- In 6 days, the total work done is [tex]\(6 \times \frac{1}{12} = \frac{6}{12} = \frac{1}{2}\)[/tex].
Therefore, the amount of work Ram and Shyam can do together in 6 days is [tex]\(\frac{1}{2}\)[/tex].
The correct answer is:
(iii) [tex]\(\frac{1}{2}\)[/tex]
1. Determine the work rates:
- Ram's work rate: Ram alone can complete the work in 20 days. Hence, in one day, Ram can complete [tex]\(\frac{1}{20}\)[/tex] of the work.
- Shyam's work rate: Shyam alone can complete the work in 30 days. Hence, in one day, Shyam can complete [tex]\(\frac{1}{30}\)[/tex] of the work.
2. Combine the work rates:
- When working together, their combined work rate per day is the sum of their individual rates.
- Combined work rate = [tex]\(\frac{1}{20} + \frac{1}{30}\)[/tex].
3. Find a common denominator to add the fractions:
- The least common multiple (LCM) of 20 and 30 is 60.
- [tex]\(\frac{1}{20}\)[/tex] can be converted to [tex]\(\frac{3}{60}\)[/tex] (since [tex]\(20 \times 3 = 60\)[/tex]).
- [tex]\(\frac{1}{30}\)[/tex] can be converted to [tex]\(\frac{2}{60}\)[/tex] (since [tex]\(30 \times 2 = 60\)[/tex]).
- Hence, [tex]\(\frac{1}{20} + \frac{1}{30} = \frac{3}{60} + \frac{2}{60} = \frac{5}{60} = \frac{1}{12}\)[/tex].
4. Calculate the work done in 6 days:
- If Ram and Shyam work together, they can complete [tex]\(\frac{1}{12}\)[/tex] of the work in one day.
- In 6 days, the total work done is [tex]\(6 \times \frac{1}{12} = \frac{6}{12} = \frac{1}{2}\)[/tex].
Therefore, the amount of work Ram and Shyam can do together in 6 days is [tex]\(\frac{1}{2}\)[/tex].
The correct answer is:
(iii) [tex]\(\frac{1}{2}\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.