Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's solve this step-by-step:
1. Determine the work rates:
- Ram's work rate: Ram alone can complete the work in 20 days. Hence, in one day, Ram can complete [tex]\(\frac{1}{20}\)[/tex] of the work.
- Shyam's work rate: Shyam alone can complete the work in 30 days. Hence, in one day, Shyam can complete [tex]\(\frac{1}{30}\)[/tex] of the work.
2. Combine the work rates:
- When working together, their combined work rate per day is the sum of their individual rates.
- Combined work rate = [tex]\(\frac{1}{20} + \frac{1}{30}\)[/tex].
3. Find a common denominator to add the fractions:
- The least common multiple (LCM) of 20 and 30 is 60.
- [tex]\(\frac{1}{20}\)[/tex] can be converted to [tex]\(\frac{3}{60}\)[/tex] (since [tex]\(20 \times 3 = 60\)[/tex]).
- [tex]\(\frac{1}{30}\)[/tex] can be converted to [tex]\(\frac{2}{60}\)[/tex] (since [tex]\(30 \times 2 = 60\)[/tex]).
- Hence, [tex]\(\frac{1}{20} + \frac{1}{30} = \frac{3}{60} + \frac{2}{60} = \frac{5}{60} = \frac{1}{12}\)[/tex].
4. Calculate the work done in 6 days:
- If Ram and Shyam work together, they can complete [tex]\(\frac{1}{12}\)[/tex] of the work in one day.
- In 6 days, the total work done is [tex]\(6 \times \frac{1}{12} = \frac{6}{12} = \frac{1}{2}\)[/tex].
Therefore, the amount of work Ram and Shyam can do together in 6 days is [tex]\(\frac{1}{2}\)[/tex].
The correct answer is:
(iii) [tex]\(\frac{1}{2}\)[/tex]
1. Determine the work rates:
- Ram's work rate: Ram alone can complete the work in 20 days. Hence, in one day, Ram can complete [tex]\(\frac{1}{20}\)[/tex] of the work.
- Shyam's work rate: Shyam alone can complete the work in 30 days. Hence, in one day, Shyam can complete [tex]\(\frac{1}{30}\)[/tex] of the work.
2. Combine the work rates:
- When working together, their combined work rate per day is the sum of their individual rates.
- Combined work rate = [tex]\(\frac{1}{20} + \frac{1}{30}\)[/tex].
3. Find a common denominator to add the fractions:
- The least common multiple (LCM) of 20 and 30 is 60.
- [tex]\(\frac{1}{20}\)[/tex] can be converted to [tex]\(\frac{3}{60}\)[/tex] (since [tex]\(20 \times 3 = 60\)[/tex]).
- [tex]\(\frac{1}{30}\)[/tex] can be converted to [tex]\(\frac{2}{60}\)[/tex] (since [tex]\(30 \times 2 = 60\)[/tex]).
- Hence, [tex]\(\frac{1}{20} + \frac{1}{30} = \frac{3}{60} + \frac{2}{60} = \frac{5}{60} = \frac{1}{12}\)[/tex].
4. Calculate the work done in 6 days:
- If Ram and Shyam work together, they can complete [tex]\(\frac{1}{12}\)[/tex] of the work in one day.
- In 6 days, the total work done is [tex]\(6 \times \frac{1}{12} = \frac{6}{12} = \frac{1}{2}\)[/tex].
Therefore, the amount of work Ram and Shyam can do together in 6 days is [tex]\(\frac{1}{2}\)[/tex].
The correct answer is:
(iii) [tex]\(\frac{1}{2}\)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.