Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the equation step-by-step:
Given equation:
[tex]\[ \frac{-3x - 7}{4} = 11 \][/tex]
### Step 1: Multiplication Property of Equality
To eliminate the fraction, we multiply both sides of the equation by 4:
[tex]\[ \frac{-3x - 7}{4} \cdot 4 = 11 \cdot 4 \][/tex]
[tex]\[ -3x - 7 = 44 \][/tex]
### Step 2: Simplification
The equation is now:
[tex]\[ -3x - 7 = 44 \][/tex]
### Step 3: Addition Property of Equality
To isolate the term with [tex]\( x \)[/tex], we add 7 to both sides:
[tex]\[ -3x - 7 + 7 = 44 + 7 \][/tex]
[tex]\[ -3x = 51 \][/tex]
### Step 4: Simplification
The equation now is:
[tex]\[ -3x = 51 \][/tex]
### Step 5: Division Property of Equality
To solve for [tex]\( x \)[/tex], we divide both sides by -3:
[tex]\[ \frac{-3x}{-3} = \frac{51}{-3} \][/tex]
[tex]\[ x = -17 \][/tex]
### Step 6: Simplification
The final result is:
[tex]\[ x = -17 \][/tex]
So, the value of [tex]\( x \)[/tex] is [tex]\( -17 \)[/tex].
Here is the completed table with justifications for each step:
[tex]\[ \begin{array}{|r|ll} \hline \text{Steps} & \text{Justifications} \\ \hline \frac{-3x - 7}{4} \cdot 4 = 11 \cdot 4 & \text{1. Multiplication property of equality} \\ -3x - 7 = 44 & \text{2. Simplification} \\ -3x - 7 + 7 = 44 + 7 & \text{3. Addition property of equality} \\ -3x = 51 & \text{4. Simplification} \\ \frac{-3x}{-3} = \frac{51}{-3} & \text{5. Division property of equality} \\ x = -17 & \text{6. Simplification} \\ \hline \end{array} \][/tex]
Given equation:
[tex]\[ \frac{-3x - 7}{4} = 11 \][/tex]
### Step 1: Multiplication Property of Equality
To eliminate the fraction, we multiply both sides of the equation by 4:
[tex]\[ \frac{-3x - 7}{4} \cdot 4 = 11 \cdot 4 \][/tex]
[tex]\[ -3x - 7 = 44 \][/tex]
### Step 2: Simplification
The equation is now:
[tex]\[ -3x - 7 = 44 \][/tex]
### Step 3: Addition Property of Equality
To isolate the term with [tex]\( x \)[/tex], we add 7 to both sides:
[tex]\[ -3x - 7 + 7 = 44 + 7 \][/tex]
[tex]\[ -3x = 51 \][/tex]
### Step 4: Simplification
The equation now is:
[tex]\[ -3x = 51 \][/tex]
### Step 5: Division Property of Equality
To solve for [tex]\( x \)[/tex], we divide both sides by -3:
[tex]\[ \frac{-3x}{-3} = \frac{51}{-3} \][/tex]
[tex]\[ x = -17 \][/tex]
### Step 6: Simplification
The final result is:
[tex]\[ x = -17 \][/tex]
So, the value of [tex]\( x \)[/tex] is [tex]\( -17 \)[/tex].
Here is the completed table with justifications for each step:
[tex]\[ \begin{array}{|r|ll} \hline \text{Steps} & \text{Justifications} \\ \hline \frac{-3x - 7}{4} \cdot 4 = 11 \cdot 4 & \text{1. Multiplication property of equality} \\ -3x - 7 = 44 & \text{2. Simplification} \\ -3x - 7 + 7 = 44 + 7 & \text{3. Addition property of equality} \\ -3x = 51 & \text{4. Simplification} \\ \frac{-3x}{-3} = \frac{51}{-3} & \text{5. Division property of equality} \\ x = -17 & \text{6. Simplification} \\ \hline \end{array} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.