Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the force acting on a mass of [tex]\(10 \, \text{kg}\)[/tex] moving with a constant velocity of [tex]\(2 \, \text{m/s}\)[/tex], we can follow the steps below:
1. Understand the Problem:
- We have a mass, [tex]\(m = 10 \, \text{kg}\)[/tex].
- The object is moving with a constant velocity, [tex]\(v = 2 \, \text{m/s}\)[/tex].
2. Recall Newton's First Law:
- Newton's First Law states that an object will remain at rest or in uniform motion unless acted upon by a net external force.
3. Constant Velocity Implication:
- Since the object is moving with constant velocity, there is no acceleration. Acceleration ([tex]\(a\)[/tex]) is zero.
4. Newton's Second Law:
- Newton's Second Law of Motion states that the force ([tex]\(F\)[/tex]) acting on an object is the product of its mass ([tex]\(m\)[/tex]) and its acceleration ([tex]\(a\)[/tex]):
[tex]\[ F = m \cdot a \][/tex]
5. Apply the Information:
- Given that acceleration [tex]\(a = 0\)[/tex]:
[tex]\[ F = 10 \, \text{kg} \times 0 \, \text{m/s}^2 = 0 \, \text{N} \][/tex]
Therefore, the force acting on the mass of [tex]\(10 \, \text{kg}\)[/tex], moving with a constant velocity of [tex]\(2 \, \text{m/s}\)[/tex], is [tex]\(0 \, \text{N}\)[/tex].
So, the correct answer is:
d. zero
1. Understand the Problem:
- We have a mass, [tex]\(m = 10 \, \text{kg}\)[/tex].
- The object is moving with a constant velocity, [tex]\(v = 2 \, \text{m/s}\)[/tex].
2. Recall Newton's First Law:
- Newton's First Law states that an object will remain at rest or in uniform motion unless acted upon by a net external force.
3. Constant Velocity Implication:
- Since the object is moving with constant velocity, there is no acceleration. Acceleration ([tex]\(a\)[/tex]) is zero.
4. Newton's Second Law:
- Newton's Second Law of Motion states that the force ([tex]\(F\)[/tex]) acting on an object is the product of its mass ([tex]\(m\)[/tex]) and its acceleration ([tex]\(a\)[/tex]):
[tex]\[ F = m \cdot a \][/tex]
5. Apply the Information:
- Given that acceleration [tex]\(a = 0\)[/tex]:
[tex]\[ F = 10 \, \text{kg} \times 0 \, \text{m/s}^2 = 0 \, \text{N} \][/tex]
Therefore, the force acting on the mass of [tex]\(10 \, \text{kg}\)[/tex], moving with a constant velocity of [tex]\(2 \, \text{m/s}\)[/tex], is [tex]\(0 \, \text{N}\)[/tex].
So, the correct answer is:
d. zero
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.