Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's determine the sets [tex]\( S \)[/tex] and [tex]\( T \)[/tex] based on the given conditions and then find their intersection [tex]\( S \cap T \)[/tex].
First, we'll identify the elements in set [tex]\( S \)[/tex]:
[tex]\[ S = \left\{ x \in [-6, 3] \setminus \{-2, 2\} : \frac{|x+3| - 1}{|x| - 2} \geq 0 \right\} \][/tex]
We need to find the integers within [tex]\([-6, 3]\)[/tex] (excluding [tex]\(-2\)[/tex] and [tex]\(2\)[/tex]), satisfying the inequality:
[tex]\[ \frac{|x+3| - 1}{|x| - 2} \geq 0 \][/tex]
After analyzing this expression, we'll find the set of valid [tex]\(x\)[/tex] values within the working range:
[tex]\[ S = \{ -6, -5, -4, 3 \} \][/tex]
Next, let's identify the elements in set [tex]\( T \)[/tex]:
[tex]\[ T = \left\{ x \in \mathbb{Z} : x^2 - 7|x| + 9 \leq 0 \right\} \][/tex]
We solve the inequality:
[tex]\[ x^2 - 7|x| + 9 \leq 0 \][/tex]
Solving this, we find:
[tex]\[ T = \{-5, -4, -3, -2, 2, 3, 4, 5\} \][/tex]
Now, we find the intersection [tex]\( S \cap T \)[/tex], which are the common elements between sets [tex]\( S \)[/tex] and [tex]\( T \)[/tex]:
[tex]\[ S \cap T = \{ -5, -4, 3 \} \][/tex]
The number of elements in [tex]\( S \cap T \)[/tex] is:
[tex]\[ |S \cap T| = 3 \][/tex]
Thus, the number of elements in the intersection of sets [tex]\( S \)[/tex] and [tex]\( T \)[/tex] is:
[tex]\[ \boxed{3} \][/tex]
First, we'll identify the elements in set [tex]\( S \)[/tex]:
[tex]\[ S = \left\{ x \in [-6, 3] \setminus \{-2, 2\} : \frac{|x+3| - 1}{|x| - 2} \geq 0 \right\} \][/tex]
We need to find the integers within [tex]\([-6, 3]\)[/tex] (excluding [tex]\(-2\)[/tex] and [tex]\(2\)[/tex]), satisfying the inequality:
[tex]\[ \frac{|x+3| - 1}{|x| - 2} \geq 0 \][/tex]
After analyzing this expression, we'll find the set of valid [tex]\(x\)[/tex] values within the working range:
[tex]\[ S = \{ -6, -5, -4, 3 \} \][/tex]
Next, let's identify the elements in set [tex]\( T \)[/tex]:
[tex]\[ T = \left\{ x \in \mathbb{Z} : x^2 - 7|x| + 9 \leq 0 \right\} \][/tex]
We solve the inequality:
[tex]\[ x^2 - 7|x| + 9 \leq 0 \][/tex]
Solving this, we find:
[tex]\[ T = \{-5, -4, -3, -2, 2, 3, 4, 5\} \][/tex]
Now, we find the intersection [tex]\( S \cap T \)[/tex], which are the common elements between sets [tex]\( S \)[/tex] and [tex]\( T \)[/tex]:
[tex]\[ S \cap T = \{ -5, -4, 3 \} \][/tex]
The number of elements in [tex]\( S \cap T \)[/tex] is:
[tex]\[ |S \cap T| = 3 \][/tex]
Thus, the number of elements in the intersection of sets [tex]\( S \)[/tex] and [tex]\( T \)[/tex] is:
[tex]\[ \boxed{3} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.