Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's determine the sets [tex]\( S \)[/tex] and [tex]\( T \)[/tex] based on the given conditions and then find their intersection [tex]\( S \cap T \)[/tex].
First, we'll identify the elements in set [tex]\( S \)[/tex]:
[tex]\[ S = \left\{ x \in [-6, 3] \setminus \{-2, 2\} : \frac{|x+3| - 1}{|x| - 2} \geq 0 \right\} \][/tex]
We need to find the integers within [tex]\([-6, 3]\)[/tex] (excluding [tex]\(-2\)[/tex] and [tex]\(2\)[/tex]), satisfying the inequality:
[tex]\[ \frac{|x+3| - 1}{|x| - 2} \geq 0 \][/tex]
After analyzing this expression, we'll find the set of valid [tex]\(x\)[/tex] values within the working range:
[tex]\[ S = \{ -6, -5, -4, 3 \} \][/tex]
Next, let's identify the elements in set [tex]\( T \)[/tex]:
[tex]\[ T = \left\{ x \in \mathbb{Z} : x^2 - 7|x| + 9 \leq 0 \right\} \][/tex]
We solve the inequality:
[tex]\[ x^2 - 7|x| + 9 \leq 0 \][/tex]
Solving this, we find:
[tex]\[ T = \{-5, -4, -3, -2, 2, 3, 4, 5\} \][/tex]
Now, we find the intersection [tex]\( S \cap T \)[/tex], which are the common elements between sets [tex]\( S \)[/tex] and [tex]\( T \)[/tex]:
[tex]\[ S \cap T = \{ -5, -4, 3 \} \][/tex]
The number of elements in [tex]\( S \cap T \)[/tex] is:
[tex]\[ |S \cap T| = 3 \][/tex]
Thus, the number of elements in the intersection of sets [tex]\( S \)[/tex] and [tex]\( T \)[/tex] is:
[tex]\[ \boxed{3} \][/tex]
First, we'll identify the elements in set [tex]\( S \)[/tex]:
[tex]\[ S = \left\{ x \in [-6, 3] \setminus \{-2, 2\} : \frac{|x+3| - 1}{|x| - 2} \geq 0 \right\} \][/tex]
We need to find the integers within [tex]\([-6, 3]\)[/tex] (excluding [tex]\(-2\)[/tex] and [tex]\(2\)[/tex]), satisfying the inequality:
[tex]\[ \frac{|x+3| - 1}{|x| - 2} \geq 0 \][/tex]
After analyzing this expression, we'll find the set of valid [tex]\(x\)[/tex] values within the working range:
[tex]\[ S = \{ -6, -5, -4, 3 \} \][/tex]
Next, let's identify the elements in set [tex]\( T \)[/tex]:
[tex]\[ T = \left\{ x \in \mathbb{Z} : x^2 - 7|x| + 9 \leq 0 \right\} \][/tex]
We solve the inequality:
[tex]\[ x^2 - 7|x| + 9 \leq 0 \][/tex]
Solving this, we find:
[tex]\[ T = \{-5, -4, -3, -2, 2, 3, 4, 5\} \][/tex]
Now, we find the intersection [tex]\( S \cap T \)[/tex], which are the common elements between sets [tex]\( S \)[/tex] and [tex]\( T \)[/tex]:
[tex]\[ S \cap T = \{ -5, -4, 3 \} \][/tex]
The number of elements in [tex]\( S \cap T \)[/tex] is:
[tex]\[ |S \cap T| = 3 \][/tex]
Thus, the number of elements in the intersection of sets [tex]\( S \)[/tex] and [tex]\( T \)[/tex] is:
[tex]\[ \boxed{3} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.