Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's rewrite the given logarithmic equation [tex]\(\log_4(8) = \frac{3}{2}\)[/tex] in exponential form. Here is the step-by-step solution:
1. Understand the logarithmic form:
The logarithmic equation [tex]\(\log_b(a) = c\)[/tex] means that [tex]\(b^c = a\)[/tex], where [tex]\(b\)[/tex] is the base, [tex]\(a\)[/tex] is the result, and [tex]\(c\)[/tex] is the exponent.
2. Identify the components:
In the given equation [tex]\(\log_4(8) = \frac{3}{2}\)[/tex], we can identify:
- The base [tex]\(b\)[/tex] is 4.
- The result [tex]\(a\)[/tex] is 8.
- The exponent [tex]\(c\)[/tex] is [tex]\(\frac{3}{2}\)[/tex].
3. Rewrite in exponential form:
Using the relationship [tex]\(b^c = a\)[/tex], we substitute [tex]\(b\)[/tex], [tex]\(c\)[/tex], and [tex]\(a\)[/tex] with 4, [tex]\(\frac{3}{2}\)[/tex], and 8, respectively:
[tex]\[ 4^{\frac{3}{2}} = 8. \][/tex]
Thus, the logarithmic equation [tex]\(\log_4(8) = \frac{3}{2}\)[/tex] can be rewritten in exponential form as [tex]\(4^{\frac{3}{2}} = 8\)[/tex].
1. Understand the logarithmic form:
The logarithmic equation [tex]\(\log_b(a) = c\)[/tex] means that [tex]\(b^c = a\)[/tex], where [tex]\(b\)[/tex] is the base, [tex]\(a\)[/tex] is the result, and [tex]\(c\)[/tex] is the exponent.
2. Identify the components:
In the given equation [tex]\(\log_4(8) = \frac{3}{2}\)[/tex], we can identify:
- The base [tex]\(b\)[/tex] is 4.
- The result [tex]\(a\)[/tex] is 8.
- The exponent [tex]\(c\)[/tex] is [tex]\(\frac{3}{2}\)[/tex].
3. Rewrite in exponential form:
Using the relationship [tex]\(b^c = a\)[/tex], we substitute [tex]\(b\)[/tex], [tex]\(c\)[/tex], and [tex]\(a\)[/tex] with 4, [tex]\(\frac{3}{2}\)[/tex], and 8, respectively:
[tex]\[ 4^{\frac{3}{2}} = 8. \][/tex]
Thus, the logarithmic equation [tex]\(\log_4(8) = \frac{3}{2}\)[/tex] can be rewritten in exponential form as [tex]\(4^{\frac{3}{2}} = 8\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.