At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Applying the Quadratic Formula: Decimal Answers

Use the quadratic formula to solve for [tex]\( x \)[/tex].

[tex]\[ 4x^2 = 9x - 3 \][/tex]

Round your answer to the nearest hundredth. If there is more than one solution, separate them with commas.

[tex]\[ x = \][/tex]

[tex]\[ \square \][/tex]


Sagot :

To solve the quadratic equation [tex]\( 4x^2 = 9x - 3 \)[/tex], we'll follow these steps:

1. Rewrite the equation in standard form:
The standard form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex].
We start with:
[tex]\[ 4x^2 = 9x - 3 \][/tex]
To convert this into the standard form, move all terms to one side of the equation:
[tex]\[ 4x^2 - 9x + 3 = 0 \][/tex]

Now, we can identify the coefficients:
[tex]\[ a = 4, \quad b = -9, \quad c = 3 \][/tex]

2. Calculate the discriminant:
The discriminant of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = (-9)^2 - 4 \cdot 4 \cdot 3 = 81 - 48 = 33 \][/tex]

3. Use the quadratic formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ x = \frac{9 \pm \sqrt{33}}{8} \][/tex]

4. Calculate the two solutions:
We compute the two potential solutions for [tex]\( x \)[/tex]:
[tex]\[ x_1 = \frac{9 + \sqrt{33}}{8} \][/tex]
[tex]\[ x_2 = \frac{9 - \sqrt{33}}{8} \][/tex]

5. Round the solutions to the nearest hundredth:
Finally, we round the solutions to the nearest hundredth. Given:
[tex]\[ x_1 \approx 1.84 \quad \text{and} \quad x_2 \approx 0.41 \][/tex]

Therefore, the solutions to the quadratic equation [tex]\( 4x^2 = 9x - 3 \)[/tex] rounded to the nearest hundredth are:
[tex]\[ x = 1.84, 0.41 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.