Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem of how many odd numbers Jerry writes down when listing all odd numbers from 1 to 999, we can follow a methodical approach using the concept of arithmetic sequences.
1. Identify the properties of the sequence:
- The sequence starts at 1.
- The common difference between consecutive terms is 2 (since each number differs from the previous one by 2).
2. Formulate the general form of the nth term of the sequence:
- The nth term ([tex]\(a_n\)[/tex]) of an arithmetic sequence can be described by the formula:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
Where [tex]\(a_1\)[/tex] is the first term, [tex]\(d\)[/tex] is the common difference, and [tex]\(n\)[/tex] is the number of terms.
3. Assign the known values:
- The first term ([tex]\(a_1\)[/tex]) is 1.
- The common difference ([tex]\(d\)[/tex]) is 2.
- The last term ([tex]\(a_n\)[/tex]) is 999.
4. Set up the equation to find the number of terms (n):
[tex]\[ 999 = 1 + (n - 1) \cdot 2 \][/tex]
5. Solve for [tex]\(n\)[/tex]:
- First, isolate the term involving [tex]\(n\)[/tex]:
[tex]\[ 999 = 1 + 2(n - 1) \][/tex]
[tex]\[ 999 - 1 = 2(n - 1) \][/tex]
[tex]\[ 998 = 2(n - 1) \][/tex]
- Next, divide both sides by 2:
[tex]\[ \frac{998}{2} = n - 1 \][/tex]
[tex]\[ 499 = n - 1 \][/tex]
- Finally, solve for [tex]\(n\)[/tex] by adding 1 to both sides:
[tex]\[ n = 499 + 1 \][/tex]
[tex]\[ n = 500 \][/tex]
Therefore, Jerry writes down 500 odd numbers in the sequence from 1 to 999.
1. Identify the properties of the sequence:
- The sequence starts at 1.
- The common difference between consecutive terms is 2 (since each number differs from the previous one by 2).
2. Formulate the general form of the nth term of the sequence:
- The nth term ([tex]\(a_n\)[/tex]) of an arithmetic sequence can be described by the formula:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
Where [tex]\(a_1\)[/tex] is the first term, [tex]\(d\)[/tex] is the common difference, and [tex]\(n\)[/tex] is the number of terms.
3. Assign the known values:
- The first term ([tex]\(a_1\)[/tex]) is 1.
- The common difference ([tex]\(d\)[/tex]) is 2.
- The last term ([tex]\(a_n\)[/tex]) is 999.
4. Set up the equation to find the number of terms (n):
[tex]\[ 999 = 1 + (n - 1) \cdot 2 \][/tex]
5. Solve for [tex]\(n\)[/tex]:
- First, isolate the term involving [tex]\(n\)[/tex]:
[tex]\[ 999 = 1 + 2(n - 1) \][/tex]
[tex]\[ 999 - 1 = 2(n - 1) \][/tex]
[tex]\[ 998 = 2(n - 1) \][/tex]
- Next, divide both sides by 2:
[tex]\[ \frac{998}{2} = n - 1 \][/tex]
[tex]\[ 499 = n - 1 \][/tex]
- Finally, solve for [tex]\(n\)[/tex] by adding 1 to both sides:
[tex]\[ n = 499 + 1 \][/tex]
[tex]\[ n = 500 \][/tex]
Therefore, Jerry writes down 500 odd numbers in the sequence from 1 to 999.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.