Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Problem:
Jerry writes down all the odd numbers 1, 3, 5, 7,..., up to 999. What is the sum of all the numbers he writes down?
Let's break down the solution step-by-step:
1. Identify the sequence:
The sequence of odd numbers from 1 to 999 forms an arithmetic series where each term after the first one is obtained by adding a common difference. In this case:
- The first term ([tex]\(a\)[/tex]) is 1.
- The common difference ([tex]\(d\)[/tex]) is 2.
2. Determine the number of terms in the series:
The last term ([tex]\(l\)[/tex]) is 999.
To find the number of terms ([tex]\(n\)[/tex]), we use the formula for the [tex]\(n\)[/tex]th term of an arithmetic series, which is:
[tex]\[ l = a + (n-1)d \][/tex]
Plugging in the given values,
[tex]\[ 999 = 1 + (n-1) \cdot 2 \][/tex]
Solving for [tex]\(n\)[/tex],
[tex]\[ 999 = 1 + 2n - 2 \][/tex]
[tex]\[ 999 + 1 = 2n \][/tex]
[tex]\[ 1000 = 2n \][/tex]
[tex]\[ n = 500 \][/tex]
So, there are 500 terms in the series.
3. Sum of the arithmetic series:
The sum ([tex]\(S_n\)[/tex]) of the first [tex]\(n\)[/tex] terms of an arithmetic series is given by:
[tex]\[ S_n = \frac{n}{2} \cdot (a + l) \][/tex]
Plugging in the values:
[tex]\[ n = 500 \][/tex]
[tex]\[ a = 1 \][/tex]
[tex]\[ l = 999 \][/tex]
[tex]\[ S_{500} = \frac{500}{2} \cdot (1 + 999) \][/tex]
[tex]\[ S_{500} = 250 \cdot 1000 \][/tex]
[tex]\[ S_{500} = 250000 \][/tex]
Conclusion:
The sum of all the odd numbers from 1 to 999 is 250,000.
Jerry writes down all the odd numbers 1, 3, 5, 7,..., up to 999. What is the sum of all the numbers he writes down?
Let's break down the solution step-by-step:
1. Identify the sequence:
The sequence of odd numbers from 1 to 999 forms an arithmetic series where each term after the first one is obtained by adding a common difference. In this case:
- The first term ([tex]\(a\)[/tex]) is 1.
- The common difference ([tex]\(d\)[/tex]) is 2.
2. Determine the number of terms in the series:
The last term ([tex]\(l\)[/tex]) is 999.
To find the number of terms ([tex]\(n\)[/tex]), we use the formula for the [tex]\(n\)[/tex]th term of an arithmetic series, which is:
[tex]\[ l = a + (n-1)d \][/tex]
Plugging in the given values,
[tex]\[ 999 = 1 + (n-1) \cdot 2 \][/tex]
Solving for [tex]\(n\)[/tex],
[tex]\[ 999 = 1 + 2n - 2 \][/tex]
[tex]\[ 999 + 1 = 2n \][/tex]
[tex]\[ 1000 = 2n \][/tex]
[tex]\[ n = 500 \][/tex]
So, there are 500 terms in the series.
3. Sum of the arithmetic series:
The sum ([tex]\(S_n\)[/tex]) of the first [tex]\(n\)[/tex] terms of an arithmetic series is given by:
[tex]\[ S_n = \frac{n}{2} \cdot (a + l) \][/tex]
Plugging in the values:
[tex]\[ n = 500 \][/tex]
[tex]\[ a = 1 \][/tex]
[tex]\[ l = 999 \][/tex]
[tex]\[ S_{500} = \frac{500}{2} \cdot (1 + 999) \][/tex]
[tex]\[ S_{500} = 250 \cdot 1000 \][/tex]
[tex]\[ S_{500} = 250000 \][/tex]
Conclusion:
The sum of all the odd numbers from 1 to 999 is 250,000.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.