Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the length of the hypotenuse in a [tex]\(45^\circ\)[/tex]-[tex]\(45^\circ\)[/tex]-[tex]\(90^\circ\)[/tex] triangle, we can use the properties of this special right triangle. In a [tex]\(45^\circ\)[/tex]-[tex]\(45^\circ\)[/tex]-[tex]\(90^\circ\)[/tex] triangle, the lengths of the legs are equal, and the hypotenuse is related to the legs by the following ratio: the hypotenuse is the length of a leg times [tex]\(\sqrt{2}\)[/tex].
Here we know that each leg of the triangle measures [tex]\(12 \, \text{cm}\)[/tex].
Let's denote the leg length by [tex]\( a \)[/tex]. Thus, we have:
[tex]\[ a = 12 \, \text{cm} \][/tex]
Using the special ratio for a [tex]\(45^\circ\)[/tex]-[tex]\(45^\circ\)[/tex]-[tex]\(90^\circ\)[/tex] triangle, the hypotenuse [tex]\( h \)[/tex] can be calculated as:
[tex]\[ h = a \times \sqrt{2} \][/tex]
[tex]\[ h = 12 \times \sqrt{2} \][/tex]
Given this expression, let's substitute [tex]\(\sqrt{2}\)[/tex] and calculate the value:
[tex]\[ h = 12 \times 1.4142135623730951 \][/tex]
[tex]\[ h \approx 16.970562748477143 \][/tex]
Therefore, the length of the hypotenuse is approximately [tex]\( 16.97 \, \text{cm} \)[/tex].
Among the given options, the correct one that matches this value is:
[tex]\[ 12\sqrt{2} \, \text{cm} \][/tex]
So, the length of the hypotenuse is [tex]\( 12\sqrt{2} \, \text{cm} \)[/tex].
Here we know that each leg of the triangle measures [tex]\(12 \, \text{cm}\)[/tex].
Let's denote the leg length by [tex]\( a \)[/tex]. Thus, we have:
[tex]\[ a = 12 \, \text{cm} \][/tex]
Using the special ratio for a [tex]\(45^\circ\)[/tex]-[tex]\(45^\circ\)[/tex]-[tex]\(90^\circ\)[/tex] triangle, the hypotenuse [tex]\( h \)[/tex] can be calculated as:
[tex]\[ h = a \times \sqrt{2} \][/tex]
[tex]\[ h = 12 \times \sqrt{2} \][/tex]
Given this expression, let's substitute [tex]\(\sqrt{2}\)[/tex] and calculate the value:
[tex]\[ h = 12 \times 1.4142135623730951 \][/tex]
[tex]\[ h \approx 16.970562748477143 \][/tex]
Therefore, the length of the hypotenuse is approximately [tex]\( 16.97 \, \text{cm} \)[/tex].
Among the given options, the correct one that matches this value is:
[tex]\[ 12\sqrt{2} \, \text{cm} \][/tex]
So, the length of the hypotenuse is [tex]\( 12\sqrt{2} \, \text{cm} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.