Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the [tex]\(13^\text{th}\)[/tex] term of the geometric sequence, we need to identify the pattern and use the formula for the [tex]\(n^\text{th}\)[/tex] term of a geometric sequence.
1. Identify the first term ([tex]\(a\)[/tex]) and the common ratio ([tex]\(r\)[/tex]):
- The first term ([tex]\(a\)[/tex]) of the sequence is 1.
- The common ratio ([tex]\(r\)[/tex]) is the factor by which we multiply each term to get the next term. In this sequence:
- [tex]\(2 = 1 \times 2\)[/tex],
- [tex]\(4 = 2 \times 2\)[/tex],
- [tex]\(8 = 4 \times 2\)[/tex],
So, the common ratio [tex]\(r\)[/tex] is 2.
2. Form the general formula for the [tex]\(n^\text{th}\)[/tex] term:
The [tex]\(n^\text{th}\)[/tex] term ([tex]\(a_n\)[/tex]) of a geometric sequence is given by:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
3. Substitute the known values to find the [tex]\(13^\text{th}\)[/tex] term:
- Here, [tex]\(a = 1\)[/tex],
- [tex]\(r = 2\)[/tex],
- and we need to find [tex]\(a_{13}\)[/tex], where [tex]\(n = 13\)[/tex].
Substitute these values into the formula:
[tex]\[ a_{13} = 1 \cdot 2^{13-1} \][/tex]
4. Simplify the exponent:
[tex]\[ a_{13} = 1 \cdot 2^{12} \][/tex]
5. Calculate [tex]\(2^{12}\)[/tex]:
[tex]\[ 2^{12} = 4096 \][/tex]
6. Find the [tex]\(13^\text{th}\)[/tex] term:
[tex]\[ a_{13} = 1 \cdot 4096 = 4096 \][/tex]
Thus, the [tex]\(13^\text{th}\)[/tex] term of the sequence [tex]\(1, 2, 4, 8, \ldots\)[/tex] is:
[tex]\[ \boxed{4096} \][/tex]
1. Identify the first term ([tex]\(a\)[/tex]) and the common ratio ([tex]\(r\)[/tex]):
- The first term ([tex]\(a\)[/tex]) of the sequence is 1.
- The common ratio ([tex]\(r\)[/tex]) is the factor by which we multiply each term to get the next term. In this sequence:
- [tex]\(2 = 1 \times 2\)[/tex],
- [tex]\(4 = 2 \times 2\)[/tex],
- [tex]\(8 = 4 \times 2\)[/tex],
So, the common ratio [tex]\(r\)[/tex] is 2.
2. Form the general formula for the [tex]\(n^\text{th}\)[/tex] term:
The [tex]\(n^\text{th}\)[/tex] term ([tex]\(a_n\)[/tex]) of a geometric sequence is given by:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
3. Substitute the known values to find the [tex]\(13^\text{th}\)[/tex] term:
- Here, [tex]\(a = 1\)[/tex],
- [tex]\(r = 2\)[/tex],
- and we need to find [tex]\(a_{13}\)[/tex], where [tex]\(n = 13\)[/tex].
Substitute these values into the formula:
[tex]\[ a_{13} = 1 \cdot 2^{13-1} \][/tex]
4. Simplify the exponent:
[tex]\[ a_{13} = 1 \cdot 2^{12} \][/tex]
5. Calculate [tex]\(2^{12}\)[/tex]:
[tex]\[ 2^{12} = 4096 \][/tex]
6. Find the [tex]\(13^\text{th}\)[/tex] term:
[tex]\[ a_{13} = 1 \cdot 4096 = 4096 \][/tex]
Thus, the [tex]\(13^\text{th}\)[/tex] term of the sequence [tex]\(1, 2, 4, 8, \ldots\)[/tex] is:
[tex]\[ \boxed{4096} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.