Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which expression is equivalent to [tex]\(\sqrt{48 x^5}\)[/tex] when [tex]\(x > 0\)[/tex], let's break it down step by step.
1. Simplify the expression under the square root:
The given expression is [tex]\(\sqrt{48 x^5}\)[/tex].
2. Factor the constants and the [tex]\(x\)[/tex] terms:
[tex]\(48\)[/tex] can be factored into [tex]\(16 \times 3\)[/tex].
[tex]\(x^5\)[/tex] can be broken down as [tex]\(x^4 \times x\)[/tex].
So, we have:
[tex]\[ \sqrt{48 x^5} = \sqrt{16 \times 3 \times x^4 \times x} \][/tex]
3. Separate the square root of the product into the product of square roots:
By applying the property [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex], we get:
[tex]\[ \sqrt{16 \times 3 \times x^4 \times x} = \sqrt{16} \times \sqrt{3} \times \sqrt{x^4} \times \sqrt{x} \][/tex]
4. Simplify each square root:
[tex]\(\sqrt{16} = 4\)[/tex], [tex]\(\sqrt{3}\)[/tex] remains as it is because it’s already simplified, [tex]\(\sqrt{x^4} = x^2\)[/tex], and [tex]\(\sqrt{x}\)[/tex] remains as it is because it’s already in its simplest radical form.
Therefore, combining these, we get:
[tex]\[ 4 \times \sqrt{3} \times x^2 \times \sqrt{x} \][/tex]
5. Combine the simplified parts into one expression:
Putting it all together, we have:
[tex]\[ 4 x^2 \sqrt{3} \sqrt{x} = 4 x^2 \sqrt{3 x} \][/tex]
The correct expression that is equivalent to [tex]\(\sqrt{48 x^5}\)[/tex], when [tex]\(x > 0\)[/tex], is:
[tex]\[ 4 x^2 \sqrt{3 x} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{C. 4 x^2 \sqrt{3 x}} \][/tex]
1. Simplify the expression under the square root:
The given expression is [tex]\(\sqrt{48 x^5}\)[/tex].
2. Factor the constants and the [tex]\(x\)[/tex] terms:
[tex]\(48\)[/tex] can be factored into [tex]\(16 \times 3\)[/tex].
[tex]\(x^5\)[/tex] can be broken down as [tex]\(x^4 \times x\)[/tex].
So, we have:
[tex]\[ \sqrt{48 x^5} = \sqrt{16 \times 3 \times x^4 \times x} \][/tex]
3. Separate the square root of the product into the product of square roots:
By applying the property [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex], we get:
[tex]\[ \sqrt{16 \times 3 \times x^4 \times x} = \sqrt{16} \times \sqrt{3} \times \sqrt{x^4} \times \sqrt{x} \][/tex]
4. Simplify each square root:
[tex]\(\sqrt{16} = 4\)[/tex], [tex]\(\sqrt{3}\)[/tex] remains as it is because it’s already simplified, [tex]\(\sqrt{x^4} = x^2\)[/tex], and [tex]\(\sqrt{x}\)[/tex] remains as it is because it’s already in its simplest radical form.
Therefore, combining these, we get:
[tex]\[ 4 \times \sqrt{3} \times x^2 \times \sqrt{x} \][/tex]
5. Combine the simplified parts into one expression:
Putting it all together, we have:
[tex]\[ 4 x^2 \sqrt{3} \sqrt{x} = 4 x^2 \sqrt{3 x} \][/tex]
The correct expression that is equivalent to [tex]\(\sqrt{48 x^5}\)[/tex], when [tex]\(x > 0\)[/tex], is:
[tex]\[ 4 x^2 \sqrt{3 x} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{C. 4 x^2 \sqrt{3 x}} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.