At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which expression is equivalent to [tex]\(\sqrt{48 x^5}\)[/tex] when [tex]\(x > 0\)[/tex], let's break it down step by step.
1. Simplify the expression under the square root:
The given expression is [tex]\(\sqrt{48 x^5}\)[/tex].
2. Factor the constants and the [tex]\(x\)[/tex] terms:
[tex]\(48\)[/tex] can be factored into [tex]\(16 \times 3\)[/tex].
[tex]\(x^5\)[/tex] can be broken down as [tex]\(x^4 \times x\)[/tex].
So, we have:
[tex]\[ \sqrt{48 x^5} = \sqrt{16 \times 3 \times x^4 \times x} \][/tex]
3. Separate the square root of the product into the product of square roots:
By applying the property [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex], we get:
[tex]\[ \sqrt{16 \times 3 \times x^4 \times x} = \sqrt{16} \times \sqrt{3} \times \sqrt{x^4} \times \sqrt{x} \][/tex]
4. Simplify each square root:
[tex]\(\sqrt{16} = 4\)[/tex], [tex]\(\sqrt{3}\)[/tex] remains as it is because it’s already simplified, [tex]\(\sqrt{x^4} = x^2\)[/tex], and [tex]\(\sqrt{x}\)[/tex] remains as it is because it’s already in its simplest radical form.
Therefore, combining these, we get:
[tex]\[ 4 \times \sqrt{3} \times x^2 \times \sqrt{x} \][/tex]
5. Combine the simplified parts into one expression:
Putting it all together, we have:
[tex]\[ 4 x^2 \sqrt{3} \sqrt{x} = 4 x^2 \sqrt{3 x} \][/tex]
The correct expression that is equivalent to [tex]\(\sqrt{48 x^5}\)[/tex], when [tex]\(x > 0\)[/tex], is:
[tex]\[ 4 x^2 \sqrt{3 x} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{C. 4 x^2 \sqrt{3 x}} \][/tex]
1. Simplify the expression under the square root:
The given expression is [tex]\(\sqrt{48 x^5}\)[/tex].
2. Factor the constants and the [tex]\(x\)[/tex] terms:
[tex]\(48\)[/tex] can be factored into [tex]\(16 \times 3\)[/tex].
[tex]\(x^5\)[/tex] can be broken down as [tex]\(x^4 \times x\)[/tex].
So, we have:
[tex]\[ \sqrt{48 x^5} = \sqrt{16 \times 3 \times x^4 \times x} \][/tex]
3. Separate the square root of the product into the product of square roots:
By applying the property [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex], we get:
[tex]\[ \sqrt{16 \times 3 \times x^4 \times x} = \sqrt{16} \times \sqrt{3} \times \sqrt{x^4} \times \sqrt{x} \][/tex]
4. Simplify each square root:
[tex]\(\sqrt{16} = 4\)[/tex], [tex]\(\sqrt{3}\)[/tex] remains as it is because it’s already simplified, [tex]\(\sqrt{x^4} = x^2\)[/tex], and [tex]\(\sqrt{x}\)[/tex] remains as it is because it’s already in its simplest radical form.
Therefore, combining these, we get:
[tex]\[ 4 \times \sqrt{3} \times x^2 \times \sqrt{x} \][/tex]
5. Combine the simplified parts into one expression:
Putting it all together, we have:
[tex]\[ 4 x^2 \sqrt{3} \sqrt{x} = 4 x^2 \sqrt{3 x} \][/tex]
The correct expression that is equivalent to [tex]\(\sqrt{48 x^5}\)[/tex], when [tex]\(x > 0\)[/tex], is:
[tex]\[ 4 x^2 \sqrt{3 x} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{C. 4 x^2 \sqrt{3 x}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.