Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To rewrite the radical expression [tex]\((\sqrt{x})^5\)[/tex] in rational exponent form, let's follow these steps:
1. Understand the radical notation: The expression [tex]\(\sqrt{x}\)[/tex] can be rewritten in exponent notation as [tex]\(x^{\frac{1}{2}}\)[/tex]. This is because the square root of [tex]\(x\)[/tex] is the same as raising [tex]\(x\)[/tex] to the power of [tex]\(\frac{1}{2}\)[/tex].
2. Apply exponent rules: The given expression is [tex]\((\sqrt{x})^5\)[/tex]. Substituting [tex]\(\sqrt{x}\)[/tex] with [tex]\(x^{\frac{1}{2}}\)[/tex], we get [tex]\((x^{\frac{1}{2}})^5\)[/tex].
3. Simplify using exponent multiplication rule: According to the properties of exponents, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Applying this rule, [tex]\((x^{\frac{1}{2}})^5\)[/tex] becomes [tex]\(x^{\frac{1}{2} \cdot 5}\)[/tex].
4. Calculate the exponent: Multiply [tex]\(\frac{1}{2}\)[/tex] by 5 to get [tex]\(\frac{5}{2}\)[/tex]. Therefore, [tex]\((\sqrt{x})^5\)[/tex] is equivalent to [tex]\(x^{\frac{5}{2}}\)[/tex].
Thus, the correct answer is:
[tex]\[ E. x^{\frac{5}{2}} \][/tex]
It seems there is a typo in the available options, as none of them matches [tex]\(x^{\frac{5}{2}}\)[/tex]. Please ensure the options are verified or reevaluate the question context.
1. Understand the radical notation: The expression [tex]\(\sqrt{x}\)[/tex] can be rewritten in exponent notation as [tex]\(x^{\frac{1}{2}}\)[/tex]. This is because the square root of [tex]\(x\)[/tex] is the same as raising [tex]\(x\)[/tex] to the power of [tex]\(\frac{1}{2}\)[/tex].
2. Apply exponent rules: The given expression is [tex]\((\sqrt{x})^5\)[/tex]. Substituting [tex]\(\sqrt{x}\)[/tex] with [tex]\(x^{\frac{1}{2}}\)[/tex], we get [tex]\((x^{\frac{1}{2}})^5\)[/tex].
3. Simplify using exponent multiplication rule: According to the properties of exponents, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Applying this rule, [tex]\((x^{\frac{1}{2}})^5\)[/tex] becomes [tex]\(x^{\frac{1}{2} \cdot 5}\)[/tex].
4. Calculate the exponent: Multiply [tex]\(\frac{1}{2}\)[/tex] by 5 to get [tex]\(\frac{5}{2}\)[/tex]. Therefore, [tex]\((\sqrt{x})^5\)[/tex] is equivalent to [tex]\(x^{\frac{5}{2}}\)[/tex].
Thus, the correct answer is:
[tex]\[ E. x^{\frac{5}{2}} \][/tex]
It seems there is a typo in the available options, as none of them matches [tex]\(x^{\frac{5}{2}}\)[/tex]. Please ensure the options are verified or reevaluate the question context.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.