Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To finalize the proof that the hypotenuse [tex]\( c \)[/tex] in a [tex]\(45^{\circ}-45^{\circ}-90^{\circ}\)[/tex] triangle is [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\( a \)[/tex], we need to perform and explain the following steps:
1. Set Up the Pythagorean Theorem:
For the isosceles right triangle [tex]\(XYZ\)[/tex], which has two legs of equal length [tex]\(a\)[/tex], the Pythagorean theorem states:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
Since both legs are of equal length, substitute [tex]\(a\)[/tex] for both [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
2. Combine Like Terms:
Combine the like terms on the left side of the equation:
[tex]\[ a^2 + a^2 = 2a^2 \][/tex]
This simplifies the equation to:
[tex]\[ 2a^2 = c^2 \][/tex]
3. Find the Principal Square Root:
To solve for [tex]\(c\)[/tex] in terms of [tex]\(a\)[/tex], we need to determine the principal square root of both sides of the equation:
[tex]\[ \sqrt{2a^2} = \sqrt{c^2} \][/tex]
Simplifying both sides, we get:
[tex]\[ \sqrt{2} \cdot a = c \][/tex]
Therefore, this final step proves that the hypotenuse [tex]\(c\)[/tex] is indeed [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\(a\)[/tex]:
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
The correct final step is to determine the principal square root of both sides of the equation [tex]\(2a^2 = c^2\)[/tex].
1. Set Up the Pythagorean Theorem:
For the isosceles right triangle [tex]\(XYZ\)[/tex], which has two legs of equal length [tex]\(a\)[/tex], the Pythagorean theorem states:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
Since both legs are of equal length, substitute [tex]\(a\)[/tex] for both [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
2. Combine Like Terms:
Combine the like terms on the left side of the equation:
[tex]\[ a^2 + a^2 = 2a^2 \][/tex]
This simplifies the equation to:
[tex]\[ 2a^2 = c^2 \][/tex]
3. Find the Principal Square Root:
To solve for [tex]\(c\)[/tex] in terms of [tex]\(a\)[/tex], we need to determine the principal square root of both sides of the equation:
[tex]\[ \sqrt{2a^2} = \sqrt{c^2} \][/tex]
Simplifying both sides, we get:
[tex]\[ \sqrt{2} \cdot a = c \][/tex]
Therefore, this final step proves that the hypotenuse [tex]\(c\)[/tex] is indeed [tex]\(\sqrt{2}\)[/tex] times the length of each leg [tex]\(a\)[/tex]:
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
The correct final step is to determine the principal square root of both sides of the equation [tex]\(2a^2 = c^2\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.