Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Simplify the expression: [tex]\(-\frac{1}{7}(-3x + 7)\)[/tex]

A. [tex]\(\frac{3}{7}x + 7\)[/tex]
B. [tex]\(-\frac{3}{7}x + 7\)[/tex]
C. [tex]\(-\frac{3}{7}x + 1\)[/tex]
D. [tex]\(\frac{3}{7}x - 1\)[/tex]


Sagot :

To simplify the expression [tex]\(-\frac{1}{7}(-3x + 7)\)[/tex], we will distribute [tex]\(-\frac{1}{7}\)[/tex] to each term inside the parentheses. Here are the steps:

1. Distribute [tex]\(-\frac{1}{7}\)[/tex] to [tex]\(-3x\)[/tex]:

[tex]\[ -\frac{1}{7} \cdot (-3x) = \frac{3}{7}x \][/tex]

Explanation: Multiplying [tex]\(-\frac{1}{7}\)[/tex] by [tex]\(-3x\)[/tex] results in a positive value because multiplying two negative numbers yields a positive result. Therefore, [tex]\(-\frac{1}{7} \cdot -3x = \frac{3}{7}x\)[/tex].

2. Distribute [tex]\(-\frac{1}{7}\)[/tex] to [tex]\(7\)[/tex]:

[tex]\[ -\frac{1}{7} \cdot 7 = -1 \][/tex]

Explanation: Multiplying [tex]\(-\frac{1}{7}\)[/tex] by [tex]\(7\)[/tex] results in [tex]\(-1\)[/tex]. This is because [tex]\(7 \cdot \frac{1}{7} = 1\)[/tex] and the negative sign makes it [tex]\(-1\)[/tex].

3. Combine the simplified terms:

[tex]\[ \frac{3}{7}x - 1 \][/tex]

So, the simplified expression is:

[tex]\[ \frac{3}{7} x - 1 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{\frac{3}{7} x - 1} \][/tex]

This corresponds to option D.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.