Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the polynomial equation [tex]\(2x^4 + 3x^3 - 7x^2 - 8x + 6 = 0\)[/tex], you would typically follow these steps:
### Step 1: Identify the Polynomial
The polynomial in question is:
[tex]\[ 2x^4 + 3x^3 - 7x^2 - 8x + 6 \][/tex]
### Step 2: Check for Possible Rational Roots
Use the Rational Root Theorem, which states that any rational solution of the polynomial equation [tex]\(P(x) = 0\)[/tex] is a fraction [tex]\(\frac{p}{q}\)[/tex] where [tex]\(p\)[/tex] is a factor of the constant term (in this case, 6), and [tex]\(q\)[/tex] is a factor of the leading coefficient (in this case, 2). The possible rational roots are therefore:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2} \][/tex]
Testing these possible roots can be labor-intensive and might not yield any solutions or only some of the solutions.
### Step 3: Using Numerical or Symbolic Methods
Since we have a quartic (degree 4) polynomial, finding roots might require symbolic computation or numerical methods to find exact or approximate values.
### Step 4: Solving the Equation for Exact Roots
Using more advanced algebraic methods, you may find that the solutions are complex and involve nested square roots and possibly the use of the quadratic formula for higher degrees.
Given the complexity, we find the roots to be:
[tex]\[ -\frac{3}{8} + \sqrt{-2\left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} - \frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + \frac{61}{32 \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}} + \frac{139}{24}}}{2} + \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}}{2} \][/tex]
[tex]\[ -\sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}}{2} - \frac{3}{8} - \sqrt{-2\left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} - \frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} - \frac{61}{32 \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}} + \frac{139}{24}}}{2} \][/tex]
[tex]\[ -\sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}}{2} - \frac{3}{8} + \sqrt{-2\left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} - \frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} - \frac{61}{32 \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}} + \frac{139}{24}}}{2} \][/tex]
[tex]\[ -\sqrt{-2\left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} - \frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + \frac{61}{32 \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}} + \frac{139}{24}}}{2} - \frac{3}{8} + \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}}{2} \][/tex]
These roots are complex and do not easily simplify further in typical algebraic methods.
### Final Note:
The solutions provided are exact and involve intricate expressions. In practice, one may use numerical approximations for simplicity unless exact solutions are required.
### Step 1: Identify the Polynomial
The polynomial in question is:
[tex]\[ 2x^4 + 3x^3 - 7x^2 - 8x + 6 \][/tex]
### Step 2: Check for Possible Rational Roots
Use the Rational Root Theorem, which states that any rational solution of the polynomial equation [tex]\(P(x) = 0\)[/tex] is a fraction [tex]\(\frac{p}{q}\)[/tex] where [tex]\(p\)[/tex] is a factor of the constant term (in this case, 6), and [tex]\(q\)[/tex] is a factor of the leading coefficient (in this case, 2). The possible rational roots are therefore:
[tex]\[ \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2} \][/tex]
Testing these possible roots can be labor-intensive and might not yield any solutions or only some of the solutions.
### Step 3: Using Numerical or Symbolic Methods
Since we have a quartic (degree 4) polynomial, finding roots might require symbolic computation or numerical methods to find exact or approximate values.
### Step 4: Solving the Equation for Exact Roots
Using more advanced algebraic methods, you may find that the solutions are complex and involve nested square roots and possibly the use of the quadratic formula for higher degrees.
Given the complexity, we find the roots to be:
[tex]\[ -\frac{3}{8} + \sqrt{-2\left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} - \frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + \frac{61}{32 \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}} + \frac{139}{24}}}{2} + \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}}{2} \][/tex]
[tex]\[ -\sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}}{2} - \frac{3}{8} - \sqrt{-2\left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} - \frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} - \frac{61}{32 \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}} + \frac{139}{24}}}{2} \][/tex]
[tex]\[ -\sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}}{2} - \frac{3}{8} + \sqrt{-2\left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} - \frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} - \frac{61}{32 \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}} + \frac{139}{24}}}{2} \][/tex]
[tex]\[ -\sqrt{-2\left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} - \frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + \frac{61}{32 \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}} + \frac{139}{24}}}{2} - \frac{3}{8} + \sqrt{\frac{265}{72 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}}} + 2 \left(\sqrt{\frac{65811}{576} + \frac{2191}{864}}\right)^{\frac{1}{3}} + \frac{139}{48}}}{2} \][/tex]
These roots are complex and do not easily simplify further in typical algebraic methods.
### Final Note:
The solutions provided are exact and involve intricate expressions. In practice, one may use numerical approximations for simplicity unless exact solutions are required.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.