Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Find the partial fraction decomposition, including the coefficients, of:

[tex]\[ \int \frac{x^2 - x + 6}{x^3 + 3x} \, dx \][/tex]


Sagot :

Let's tackle the problem step-by-step.

### Step 1: Partial Fraction Decomposition

We need to decompose the integrand into partial fractions.

The integrand is:
[tex]\[ \frac{x^2 - x + 6}{x^3 + 3x} \][/tex]

First, we factor the denominator:
[tex]\[ x^3 + 3x = x(x^2 + 3) \][/tex]

So, we can express the integrand as:
[tex]\[ \frac{x^2 - x + 6}{x(x^2 + 3)} \][/tex]

We assume a partial fraction decomposition of the form:
[tex]\[ \frac{x^2 - x + 6}{x(x^2 + 3)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 3} \][/tex]

Next, we multiply both sides by the denominator [tex]\( x(x^2 + 3) \)[/tex] to clear the fractions:
[tex]\[ x^2 - x + 6 = A(x^2 + 3) + (Bx + C)x \][/tex]

Now we expand and combine like terms:
[tex]\[ x^2 - x + 6 = Ax^2 + 3A + Bx^2 + Cx \][/tex]
[tex]\[ x^2 - x + 6 = (A + B)x^2 + Cx + 3A \][/tex]

We equate the coefficients of the corresponding powers of [tex]\(x\)[/tex] on both sides:
1. For [tex]\(x^2\)[/tex]: [tex]\( A + B = 1 \)[/tex]
2. For [tex]\(x\)[/tex]: [tex]\( C = -1 \)[/tex]
3. For the constant term: [tex]\( 3A = 6 \)[/tex]

From equation (3):
[tex]\[ 3A = 6 \Rightarrow A = 2 \][/tex]

Substitute [tex]\( A = 2 \)[/tex] into equation (1):
[tex]\[ 2 + B = 1 \Rightarrow B = -1 \][/tex]

So, the partial fraction decomposition is:
[tex]\[ \frac{2}{x} + \frac{(-1)x - 1}{x^2 + 3} \][/tex]
[tex]\[ = \frac{2}{x} - \frac{x + 1}{x^2 + 3} \][/tex]

### Step 2: Integrate the Partial Fractions

Now, we integrate each term separately:
[tex]\[ \int \left( \frac{2}{x} - \frac{x + 1}{x^2 + 3} \right) dx \][/tex]

First, integrate [tex]\( \frac{2}{x} \)[/tex]:
[tex]\[ \int \frac{2}{x} dx = 2 \ln |x| \][/tex]

Next, integrate [tex]\( \frac{x + 1}{x^2 + 3} \)[/tex]. Break it into two integrals:
[tex]\[ \int \frac{x + 1}{x^2 + 3} dx = \int \frac{x}{x^2 + 3} dx + \int \frac{1}{x^2 + 3} dx \][/tex]

For [tex]\( \int \frac{x}{x^2 + 3} dx \)[/tex]:
Use the substitution [tex]\( u = x^2 + 3 \)[/tex], then [tex]\( du = 2x \, dx \)[/tex]:
[tex]\[ \int \frac{x}{x^2 + 3} dx = \frac{1}{2} \int \frac{2x}{x^2 + 3} dx = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln|u| = \frac{1}{2} \ln|x^2 + 3| \][/tex]

For [tex]\( \int \frac{1}{x^2 + 3} dx \)[/tex]:
Recall the integral of [tex]\( \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \left( \frac{x}{a} \right) \)[/tex]:
[tex]\[ \int \frac{1}{x^2 + 3} dx = \frac{1}{\sqrt{3}} \arctan \left( \frac{x}{\sqrt{3}} \right) \][/tex]

Combining these integrals, we get:
[tex]\[ \int \frac{x + 1}{x^2 + 3} dx = \frac{1}{2} \ln|x^2 + 3| + \frac{1}{\sqrt{3}} \arctan \left( \frac{x}{\sqrt{3}} \right) \][/tex]

Thus, the integral becomes:
[tex]\[ \int \left( \frac{2}{x} - \frac{x + 1}{x^2 + 3} \right) dx \][/tex]
[tex]\[ = 2 \ln |x| - \left( \frac{1}{2} \ln |x^2 + 3| + \frac{1}{\sqrt{3}} \arctan \left( \frac{x}{\sqrt{3}} \right) \right) \][/tex]
[tex]\[ = 2 \ln |x| - \frac{1}{2} \ln |x^2 + 3| - \frac{1}{\sqrt{3}} \arctan \left( \frac{x}{\sqrt{3}} \right) \][/tex]

### Final Answer

Thus, the partial fraction decomposition of:
[tex]\[ \frac{x^2 - x + 6}{x^3 + 3x} \][/tex]
is:
[tex]\[ \frac{2}{x} - \frac{x + 1}{x^2 + 3} \][/tex]

And the integral is:
[tex]\[ \int \frac{x^2 - x + 6}{x^3 + 3x} dx = 2 \ln |x| - \frac{1}{2} \ln |x^2 + 3| - \frac{1}{\sqrt{3}} \arctan \left( \frac{x}{\sqrt{3}} \right) + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.